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Biometrics: What  
Makes You-nique?
by Karl Ni

ON OUR RADAR

Colleagues in Emeryville who toiled on the movie The Incredibles have told me their 
favorite character introduction was in Edna: the diminutive costume and weapons 
designer of many a superhero. As she escorted the main character down the stairs to 

access her secret laboratory, she placed her palm on a reader, stared down an iris sensor, and in 
a low voice, she slowly, deliberately exaggerated, “Ed-na” into a microphone. Using biometrics is 
a common theme that many a spy movie has exploited to emphasize how secure a facility is. The 
hero’s mission is usually to bypass these security measures, which according to James Bond or 
Ethan Hunt can be compromised rather crudely. In reality, it takes more than eye transplants or 
taped on fingerprints to fool any reliable system, and biometrics have become the most secure 
way to identify authorized access.

Right now, when you think of securing your valuables, you 
typically employ a password or a physical token like a key 
or keycard. These measures are designed to ensure that 
the person accessing the system is authorized. They want 
to make sure you are you.

It just so happens that there is an abundance of technology 
areas that have made it easy to hack systems protected 
under such measures. During the recent presidential 
campaign season, cyber crimes made front page news due 
to socially cracked passwords of the Democratic National 
Committee. As if external forces for abandoning passwords 
were not enough, 55 percent of us admit that we simply 
don’t login because we couldn’t remember our password 
and just as many people say they’ve abandoned purchases 
due to complications in the authentication process. 
Meanwhile, physical locks have spawned an entire 

subculture studying lock picking. Possession of lock picking 
tools is legal in most states, and illegal possession is only 
prosecutable if there is malicious intent, which is often 
difficult to prove. All the concerns were enough to make 
then-Prime Minister Stephen Harper switch systems in 
Canada, announcing that, “you can fake your name, you 
can fake your documents, but you can’t fake your 
fingerprints”.  Indeed, biometrics have a case to be argued 
in favor of a system that identifies who you are rather than 
what you know or something you have…and what makes 
you more you than you?

To this end, a lot has changed already in our acceptance 
of biometrics. I grew up in an era that considered eye 
witness testimony incontrovertible. Now it’s widely 
accepted that DNA, the blueprint of a human being and 
literal definition of someone’s identity, is not only admissible 
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but acknowledged to be more reliable than other forensic 
evidence. Around the time when most countries started 
to require fingerprinting for visa applications, biometrics 
is what got me into machine learning research. I couldn’t 
publish academic articles if my paper submission didn’t 
at least mention face detection and recognition. Since 
then, academics and federal laboratories have gone 
through full cycles of DARPA/IARPA face recognition 
funding (under FERET and JANUS) and datasets have been 
released with millions of people enrolled, ready for training 
algorithms. The advancements were enough for the Vice 
President of USAA Tom Shaw to say that “the password  
is dying.”

Face recognition is just one quintessential example of 
research progress; the general field has been the Everest 
of artificial intelligence (AI) researchers everywhere. It’s 
also one of the least publicized and most underappreciated 
fields of study. We seem to take it for granted when we get 
a phone call from the bank asking whether or not a 
transaction was ours. Many of us with iPhones have 
forgotten our passwords because we rely on the fingerprint 
analyzer. DNA is said to be the most reliable measurement 
in identifying innocent people that have found themselves 
in unfortunate situations in court. After the successful 
raid on the compound in Pakistan, few understand the 
importance and amount of work put forth in positively 
identifying Osama Bin Laden with DNA and face 
recognition. It’s one of the most heavily invested 
technologies that has gone unnoticed because the movies 
make it seem so easy.

What Makes a Good Biometric 

The term biometric can easily be broken down into its 
Greek atoms “bios”, meaning life, and “metron” relating 
to measure. There are a variety of techniques satisfying 
the nomenclature, more than you might think. Besides 
irises and fingerprints, there are instances of biometrics 
related to behavior to include metrics like typing speed, 
your online social interactions, or the websites you 
frequent. Other examples that might be intuitive but don’t 
come immediately to mind include the pulse in your veins, 
the geometry of your hands, an analysis of your gait, and 
your signature, not to be confused with handwriting (which 
is also a biometric). In fact, there’s even a company (Tatt-C) 
that identifies tattoos.

Not only are such exemplars interesting and subtle, several 
systems add the permutation to assess multiple modalities 

at once, as in the case of the company Biometrica. Each 
illustration in the diversity of the concept of being a 
biometric are well-defined if they meet four major 
requirements: 

1    �Universality — you can measure it on  
virtually everyone

2    �Uniqueness — only one person should own a 
particular set of measurements

3    �Permanence — it doesn’t change a lot over time

4    �Collectability — You can actually measure it

The above four criteria must be satisfied, but on a more 
relevant note, a biometric’s firm success intimately hinges 
on its robustness to countermeasures and loss. In building 
such capability, there is a lot of tech that goes into 
employing a single or combination of biometrics. After 
enrollment (where user data has been captured a priori), 
the technology can be broken up into standard steps of 
acquisition, preprocessing, feature extraction, matching, 
and database retrieval for any person to be identified. 

Within each step, there can be a variety of ways in which 
they are performed. For example, the hardware acquisition 
of fingerprinting alone can vary from optical to capacitive 
to thermal to RF sensors. Taking a step back to the overall 
system, the assorted range of necessary innovation quickly 
grows in a list comprised of hardware sensors, database 
management, distributed networking and network security, 
computational scaling, and software and algorithmic 
improvements. It's no wonder that more than $24 billion 
is expected to be invested in biometrics by 2020 in areas 
like banking and healthcare.

Security and the Landscape

Of course, all of these advances don’t come for free. 
Deployment of biometrics in both government and 
commercial sectors raises several questions related to 
privacy. Worries come from both voluntarily enrolled 
individuals and those whom biometrics are passively 
collected. Can the government or  a civilian firm track me? 
Will others know about my medical conditions? Does the 
technology have the inclination to evolve and then be used 
for other functions? These are all valid concerns and need 
to be addressed, and several government agencies including 
National Science and Technology Board have promised 
to do so. 
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Fortunately, there are other applications that do not limit 
themselves to security and forensics. Car manufacturers 
adapt to the way you drive by identifying your driving 
profile. Tesla’s personalization prompted users to claim 
that it has crossed the line from minor perk “to an essential 
part of the ownership experience.” Furthering the 
personalization angle, Apple’s previous patent on 
fingerprint analysis suggested that their interest lay in 
personalization as well. These illustrations serve only to 
show the breadth that biometrics can contribute.

Here at In-Q-Tel, we realize the valuable role that biometrics 
has to play. Having surveyed the landscape of innovators 
in the United States, we understand that in a lot of ways, 
getting ahead in this field will allow us to realize what’s 
next as well as determine where use cases can be augmented 
in every day applications, many of which biometrics have 
already taken center stage. Closer to the valley, Lab41, one 
of the four IQT Labs, recently took on a real-world inspired 
project, where we concluded that automation technology 
can play a key role and save analysts countless hours in 
matching writers to their handwriting. 

I hope you found our take on the growing field of biometrics 
useful. As analytics inevitably improve, the implications 
are that the matching between algorithms, software, and 
the best sensors can affect a readily employed and easily 
used package. Many businesses realize this and have begun 
to shift strategies, and coupled with multi-factor biometrics, 
the adoption rate has accelerated. The continuing 
migration of organizations to abandon the “good enough” 
conventional measures to newer and more convenient 
and secure biometric technology portends that it is more 
than just hype and intimate a trend that is indicative of 
its potential in the future.   Q

Getting ahead in this field will 
allow us to realize what’s next 
as well as determine where use 
cases can be augmented in every 
day applications, many of which 
biometrics have already taken 
center stage.

Dr. Karl Ni is the senior data scientist at Lab41, an IQT Lab. His background is in statistical signal processing, machine 
learning, and computer vision. Prior to joining In-Q-Tel, he served as principle investigator for applied research programs 
with concentrations in RADAR, image processing, and social network analytics at MIT Lincoln Laboratory and Lawrence  
Livermore National Laboratory. Dr. Ni received his doctorate and masters of electrical and computer engineering at the  
UC San Diego and his BS at UC Berkeley in electrical engineering and computer science.
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A Look Inside

In this issue of the IQT Quarterly, “What Makes You-nique?”, 
we venture into the growing world of biometric 
technologies, beyond the typical methods and applications 
most commonly seen. Karl Ni, Senior Data Scientist at 
IQT’s Lab41, provided a foundation on the varying types 
of biometrics, including what constitutes a biometric, a 
look beyond the historically popular and most commonly 
utilized forms and functions, and a look at how biometrics 
are applied to and even shape the security landscape. 

We then explore a less visual side of biometrics. Dr. Howard 
Lei of California State University discusses the wide history 
of speaker recognition as well as its recent advances and 
growing complexities. 

Lab41 Data Scientists Brad H. and Patrick Callier delve into 
the field of handwriting recognition analysis. They begin 
with a look into the challenges faced in this area of biometric 
technology and go on to contemplate the anticipated 
direction and use in the future.  

Rama Chellappa and a team of scholars from the University 
of Maryland embark on a technical exploration of facial 
recognition and analysis using deep learning, by taking a 
look at both the historical approaches and challenges as 
well as current methods. 

Next, Stephen Elliott with the International Center for 
Biometric Research at Purdue University dives into a more 
holistic approach to biometrics, the Human Biometric 
System Interaction framework, looking at not one 
component of this technology, but rather a complete 
examination of biometric performance. 

Finally, we conclude this issue with an article written by 
a team of authors from BehavioSec as they explore 
behavioral biometrics. This approach and technology 
examines the measurements of human behavior from a 
variety of sensors.   Q



IQT QUARTERLY  •   VOL 8 NO 3

6

A Brief Overview of 
Speaker Recognition
by Howard Lei

Speaker recognition is the association of a speaker’s identity to an acoustic utterance from 
characteristics of voices. In biometrics, a person’s voice attributed by speaker recognition can be 
used to verify his or her identity for purposes of access control. Research in speaker recognition 

has a rich history dating back some four decades and has evolved massively in just a few years, owing 
to the complexity and difficulty of the problem.

Figure 1  |  The pipeline for the classical speaker recognition approach.

A general pipeline of speaker recognition begins with a 
speech utterance that can contain any combination of 
voiced sounds from a speaker and can be of any duration. 
The voice can be spoken into any arbitrary voice-capturing 
device, e.g., a microphone, and in any acoustic environment. 
In the typical speaker recognition scenario, speaker models 
are constructed using utterances from a given speaker. 
Next, a test utterance spoken by an unknown speaker is 

evaluated against the speaker model to determine if the 
identity of the unknown speaker matches that from which 
the speaker model was constructed. 

Instead of matching a single query to a large database of 
speakers, the speaker recognition task often determines 
whether two distinct utterances come from the same 
speaker or different speaker. One of the utterances can be 
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thought of as representing the speaker model, while the 
other is considered to be the test utterance, whose speaker 
identity is unknown. This approach to speaker recognition 
is most commonly used by the community, and will be 
referred to for the remainder of this article.

The Fundamentals of Speaker  
Recognition Systems

Typical speaker recognition systems are considered to be 
classification systems based on machine learning 
algorithms. Because of the hundreds of thousands of hours 
of speech data a recognition system needs to process, 
considerable work has been invested into increasing the 
computational efficiency and accuracy of the systems. In 
certain speaker recognition tasks, such as the NIST 
Speaker Recognition Evaluation tasks1, a speaker 
recognition system is typically asked to arrive at the same-
speaker vs. different-speaker classification decisions for 
millions of pairs of speech utterances. 

Figure 1 illustrates the classical speaker recognition system 
pipeline. Major components of the system include feature 
extraction, speaker model training, testing, and scoring. 
The following sections explain these components in detail.

Feature extraction for speaker recognition

Given a waveform speech utterance, the speaker recognition 
system must first convert the waveform into a set of 
parameters that can be used for speaker classification. 
Converting the waveform into the set of parameters is 
referred to as feature extraction, and the process typically 
requires a plethora of signal processing algorithms. The 
most common set of parameters used are the acoustic 
features, and the most popular acoustic features are Mel-
Frequency Cepstral Coefficients (MFCCs)2. These features 
are first developed for automatic speech recognition, and 
have subsequently been found to perform well in speaker 
recognition. The MFCC features use information in 
logarithmically-spaced frequency bands of short-time 
speech spectra to match the logarithmically-spaced 
frequency responses of the human ear. The features are 
typically extracted on a frame-by-frame level, with 25 ms 
frames overlapping by 10 ms. Figure 2 illustrates the steps 
involved in MFCC feature extraction. Oftentimes, the 
temporal slope and accelerations of each acoustic feature 
vector component are used as well and augment the basic 
feature vectors. These coefficients are generally referred 
to as “delta” and “double-delta” coefficients. 

Figure 2  |  Extraction of Mel-Frequency Cepstral Coefficient (MFCC) features.
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The traditional GMM statistical modeling approach

From the early 1990s to the mid 2000s, the typical statistical 
approach used by speaker recognition systems to process 
the features and arrive at the overall classification decision 
is to model the distribution of features using Gaussian 
Mixture Models (GMMs)3. These models allow for the 
modeling of a wide range of feature distributions, with no 
prior knowledge of the distribution. The typical feature 
vector dimensions range from 40-60 dimensions, while a 
GMM can consist of up to 2,048 mixture components. 

In the same-speaker vs. different-speaker classification 
scenario, features from one of the utterances are used to 
train a GMM. A measure of how well the features from the 
test utterance fit the distribution of the GMM is then 
computed. The higher the measure, the more likely the 
two utterances belong to the same speaker, and vice versa. 
Note that it is possible for a particular speaker to have 
multiple utterances of speech. Some tasks allow multiple 
utterances from a given speaker to be used to train the 
GMM, while other tasks allow only a single utterance to 
be used. Figure 3 below shows an example of the comparison 
between a test utterance and GMM models trained for 
three different speakers. 

Advances in statistical modeling approaches

In the mid 2000s, one significant advance in the field of 
speaker recognition is the understanding that within-
speaker variability contributes to a significant source of 
error in the classification decisions, and the development 

of algorithms to deal with this variability. The within-
speaker variability can include differences in word usage 
across multiple utterances of a given speaker, and 
differences in the acoustic environment or recording 
conditions across the utterances.

Popular techniques in the mid to late 2000s that have been 
used to handle within-speaker variability include Nuisance 
Attribute Projection (NAP)4, Joint Factor Analysis (JFA)5, 
and i-vectors with probabilistic Linear Discriminant 
Analysis (pLDA)6,7. NAP is an algorithm that removes 
variability across utterances by training on multiple 
instances from the same speaker. JFA is an approach that 
decomposes the parameters of a speech utterance into a 
sum consisting of a speaker-independent component, a 
speaker-dependent component, and a component having 
to do with the recording conditions and/or acoustic 
environment. In the same-speaker vs. different-speaker 
classification problem, recognition can be performed using 
only the speaker-dependent component in the sum. 

The i-vector technique attempts to create an “identity” 
vector for a given speaker while factoring in all sources of 
variability. The identity vector acts as a voice-print for the 
speaker. Using two utterances, a metric can be applied to 
give a measure of similarity between the i-vectors from 
the two utterances. The i-vector technique also allows for 
multiple post-processing algorithms to be applied in order 
to improve the final classification decision, one of the most 
effective techniques being probabilistic Linear Discriminant 
Analysis (pLDA). Figure 4 shows the high-level speaker 

recognition paradigm with the use 
of i-vectors. Figure 5 shows the 
details of the statistical extraction 
stage, and Figure 6 shows the details 
of the scoring stage. Note that Figure 
2 showed the details of the feature 
extraction stage.

Speaker recognition system 
scoring

The performance of a speaker 
recognition system is often 
characterized by the Equal Error 
Rate (EER). A speaker recognition 
system generates one score for each 
comparison between a pair of 
utterances. Each comparison is 
called a trial. Higher scores should 

Figure 3  |  GMM speaker modeling and classification of feature vectors.
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correspond to the trials with same-
speaker comparisons, and lower scores 
should correspond to trials with 
different-speaker comparisons. A miss 
error occurs when trials with same 
speaker comparisons are classified as 
having different speakers, and a false 
alarm error occurs when trials with 
different speaker comparisons are 
classified as having the same speaker. 
The EER occurs at a scoring threshold 
where the miss error percentage equals 
the false alarm error percentage. A 
Detection Error Tradeoff (DET) curve 
(shown on the right of Figure 6) can be 
used to visualize the relationship 
between these two types of errors that 
a speaker recognition system makes. 

Note that in Figure 6, an EER of 1.6 
percent is observed in the DET curve. 
The total error percentage, consisting 
of both the false alarm and miss 
percentages, is twice the EER (e.g. 3.2 
percent). This percentage suggests that 
given two speech utterances, the speaker 
recognition system would be able to 
correctly determine whether the 
speakers in the utterances are same or 
different 96.8 percent of the time. More 
recently systems have been able to 
produce the correct result ~100 percent 
of the time for cases where the 
utterances are noiseless telephone 
conversational speech, and sufficient 
training data is available.

NIST Speaker Recognition 
Evaluations

One of the driving factors for the 
development of techniques used in 
speaker recognition systems is the bi-
annual Speaker Recognition 

Evaluations hosted by the National Institute of Standards 
and Technology (NIST). The latest evaluation is SRE168, 
which occurred in 2016. These evaluations require 
participants to run their speaker recognition systems on 
conversational speech recorded by the Linguistic Data 
Consortium (LDC)9 with various recording devices. The 

Figure 4 (top)  |  High-level overview of the i-vector speaker  
recognition paradigm.

Figure 5 (middle)  |  Details of the statistical extraction procedure for 
the i-vector speaker recognition paradigm.

Figure 6 (bottom)  |  Details of the scoring procedure speaker 
recognition systems.
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earlier evaluations used only telephone conversational 
speech between two speakers, with each speaker speaking 
for about 2 to 2.5 minutes. Each speech utterance for a 
speaker would consist of only that person’s speech in the 
telephone conversation. The later evaluations contained 
other speech styles of varying durations, along with more 
languages and recording environments from which speech 
data was collected. During each evaluation, systems are 
required to process a specified set of trials, where each 
trial requires a system to produce a speaker similarity 
score used for making the same-speaker vs. different-
speaker determination. The i-vector technique has been 
one of the most successful techniques used by systems in 
the more recent evaluations. Not only does it handle the 
different forms of within-speaker variability well, but it is 
also computationally efficient and allows millions of trials 
to be processed in a timely fashion. 

Future Challenges

A major challenge facing speaker recognition systems is 
that of handling speech in noisy recording environments, 
where the noise can come from both the voice-capturing 

Dr. Howard Lei completed his Ph.D. in Electrical Engineering and Computer Science at UC Berkeley in 2010, focusing on 
applied machine learning towards speaker recognition. He was a postdoctoral researcher at the International Computer 
Science Institute in Berkeley, CA, where he continued his work in speaker recognition, and engaged in multimedia analysis 
and classification. Dr. Lei began his work as an Assistant Professor in the School of Engineering at California State University, 
East Bay, in 2013, where he has been involved in teaching a variety of courses on computer software and hardware systems in 
the Computer Engineering program. He also has been involved in projects including the statistical prediction of medication 
demands for disease outbreaks, improving engineering education, and re-vamping curricula to introduce state-of-the-art 
software and hardware into his courses.

device, as well as the acoustic background . The state-of-
the-art approaches work well on conditions where the 
acoustic noise is limited and largely known, but 
performance decreases when the systems process speech 
recorded in more varying acoustic environments e.g., 
background music, voice, objects making sounds, etc. 

Furthermore, one of the weaknesses of the i-vector 
approach is that it requires many hours of enrollment 
data to train various components of the system, and its 
performance suffers on speech of shorter duration. 
Finding effective approaches for speaker recognition on 
utterances of shorter duration is one of the ongoing 
efforts in the field. More recent efforts in speaker 
recognition have seen the use of Deep Belief Networks 
(DBNs) in conjunction with the i-vector approach, with 
varying degrees of success. 

These challenges currently prevent speaker-recognition 
systems from being commonly used in our day-to-day lives, 
in the same way that speech-recognition systems like Siri 
are being used. Voice-based authentication in noisy 
environments is less reliable compared to other means of 
authentication, such as fingerprint (currently used in 
laptops) or DNA. Nevertheless, corporations like Nuance 
have developed voice-authentication solutions such as 
FreeSpeech10 and VocalPassword11. These are systems used 
to verify a customer’s identity by extracting the voice 
characteristics of the customer and comparing those 
characteristics to those stored in a database. ArmorVOX12 
also has developed a voice biometric engine, which is helpful 
for securing private information. Other corporations have 
developed systems based on voice biometrics as well, and 
in the future, we can expect voice biometrics to become a 
more integral part of our daily lives.  Q

In the future, we can expect voice 
biometrics to become a more 
integral part of our daily lives.
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Writer Identification  
in Handwriting
by Brad H. and Patrick Callier

Forensic identification of the writers of handwritten documents is a rarefied vocation. 
Only a few dozen handwriting specialists exist nationwide, with a handful employed in 
the Intelligence Community. The reasons their craft is hard for humans overlap with the 

reasons it would be difficult to supplant them with computers.

The CSI Effect

Hollywood has had an impact on public perception of what 
is possible in technology. From scanning a crowd in a video 
while doing facial recognition, to the hacker that, after 
spending 10 seconds rattling on a keyboard, says, “I’m in.” 
This is often often known as the CSI Effect. Even jurors 
have fallen victim, asking court-certified experts why they 
haven’t run some test they saw on their favorite crime 
show1. The reality is that technology, specifically in the 
realm of biometrics, is often exaggerated in popular media. 

Handwriting analysis falls into this category. There is no 
“enhance and compare” button for handwriting. It takes 
a skilled expert to compare two samples of handwriting 
and determine if they have common authorship. Many 
companies and academics have tried tackling this 
problem—for instance, in workshops at the IAPR 
Conference on Document Analysis and Recognition 
(ICDAR)2—but robust writer identification on real-world 
data remains elusive. Let’s explore the reasons automating 
handwriting comparison is a road fraught with obstacles.

Why Handwriter Recognition Is Hard

The biggest hurdle in handwriter identification is the 
vast range of variability within a single writer’s production. 
Consider the difference in how your writing looks when 

you use a ballpoint pen compared to a felt-tip pen. That 
difference goes beyond just the breadth of the stroke your 
pen creates; ballpoint pens leave more evidence of the 
pressure you use as you write, and of the flow of your 
hand through the stroke, both potential sources of 
information in forgery detection. Add on differences 
induced by the writing medium—lined or unlined paper? 
How far apart are the rule lines? Consider state of mind, 
how rushed the writer is, and even variability 
unattributable to any specific factor, and the range of 
written forms that a system would have to map to 
individual writers is quite vast.

Consider too that the major factors distinguishing two 
exemplars of handwriting are likely to be the content—
what is actually written on the page—and the implement 
and medium. The points of invariance that distinguish an 
individual’s writing are extremely uncommon. A document 
of hundreds of characters might only have a few points 
that tie it to other exemplars by the same writer. Those 
points of correspondence tend to be highly context-
specific—for instance the height of a letter at the start of 
a connected sequence of letters in a cursive hand. And 
potential correspondences are highly defeasible. As one 
handwriting expert put it, they are “very important, unless 
they aren’t.”
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As jaw-dropping as some recent advances in machine 
learning may be, most computer vision problems lack the 
degree of subtlety and difficulty posed by handwriter 
identification.

A small but dedicated community of research has arisen 
to take on the challenge of writer identification. They have 
pursued a variety of techniques, including tried-and-true 
machine learning algorithms and some of the more cutting-
edge technologies associated with the “deep learning” 
craze. We will go through a few of these below to give a 
flavor of what this field looks like today and offer some 
suggestions about its future.

State of the Art: Contour Gradients

The state of the art in computer vision for writer 
identification makes use of a wide set of traditional 
techniques in computer vision. One top approach, from 
computer vision expert Rajiv Jain, engineers an automated 
computer vision pipeline that tries to mimic how forensic 
specialists work by hand.

Jain’s approach first decomposes a corpus of documents 
into segments corresponding to individual letters or small 
groups of letters and clusters them together using 
unsupervised learning. The result is a “pseudoalphabet” of 
visually similar letter forms. This allows direct comparison 
between specific locations in separate exemplars, similar 
to how a forensic expert might isolate individual letters or 
digraphs and contrasts them with a canonical representation. 
For example, a connected cursive form of the word of might 
show up as its own pseudoletter across multiple documents, 
allowing for a direct comparison between exemplars that 
happen to use this form.

Each segment in a document is described by a grid of 
“contour gradients,” a way of representing the orientations 
of penstrokes across different parts of a segment. Jain’s 
algorithm compares each pair of exemplars in a corpus by 
matching segments according to which pseudoletter class 
they correspond to and finds the closest pair of segments 
across exemplars for each such pseudoletter class. It then 
computes the average difference between these closest-
matched pairs of segments and uses that to create an overall 

measure of similarity between two exemplars. If of were 
the only pseudoletter shared between two exemplars, this 
would amount to finding the closest match between two 
instances of of and using their similarity as a measure of 
the similarity between the exemplars themselves.

This approach rapidly zooms in on potential points of 
comparison between exemplars, but it is not particularly 
tolerant of noisy or poor-quality images of documents. It 
performs less well on real-world data, which typically comes 
along with many types of noise. To do better on writer 
identification in the presence of noise, Lab41 turned to 
deep learning for help.

Deep Learning

Deep learning has been successfully applied to many image-
related problems. Though handwriting and deep learning 
haven’t had a long courtship, there have been recent 
significant advancements. In August 2013, Alex Graves 
impressed the world with his Recurrent Neural Network 
(RNN) that generates handwriting3. 

You simply type any sentence and choose a handwriting 
style, and the RNN produces an online handwriting sample. 
This was a major step forward in computer vision, but it 
didn’t directly address the problem of matching exemplars 
by writer. 

A year later, Stefan Fiel and other scholars used a 
convolutional neural network (CNN) to capture features 
of writers and compare them across a corpus of document 
features4. A CNN is a wise choice, because it uses a small 
sliding window to move across (convolve) the entire image 
and gather features. If the sliding window is large enough, 
it can beautifully capture transitions from one letter to 
the next, the spacing between letters, and the edges and 
curves of handwritten characters. The paper produces 
excellent results on the ICDAR 2013 Competition on Writer 
Identification5. But real-world handwritten documents 
are often much messier than those found in academic 
datasets. They can have lines, coffee stains, watermarks, 
stamps, and many more types of noise that make feature 
extraction difficult. 

Figure 1
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The noisy nature of documents is what inspired Lab41’s 
project D*Script. D*Script focuses on combining the strengths 
of both deep learning and traditional computer vision 
techniques that have been used for writer identification. 

The first part of the system D*Script proposed is a 
denoising autoencoder (DAE). A DAE is a neural network 
architecture that takes normal inputs, adds some random 
noise to them, and then tries to reconstruct the original 
noiseless input. The DAE in D*Script has a similar job, 
but the added noise is not random. Lines, watermarks, 
and many more types of noise are added to clean document 
images. D*Script’s DAE is tasked with removing this noise. 
It learns by comparing its reconstruction with the original 
noiseless image. 

The contour gradient method can then be used to take 
the cleaned-up image and extract handwriting for 
comparison to other documents in the database. For 
further information and code, please visit our Lab41 
GitHub page6.

The Future of the Art

There is much room for improvement and innovation 
when it comes to automating handwriting authorship 
adjudication. There are several avenues that look like 
promising paths forward. One such avenue is based on 
research by Diederik Kingma7. The model in his work 
learns how to generate handwriting and style. Given an 
example of a character, it uses its knowledge of all of the 

Figure 2   |   (top) Noisy handwriting image, including notebook lines and scanner artifacts. (below) Denoised handwriting image, with greatly reduced 
noise and most notebook lines removed.

Figure 3   |  Handwritten digits (left) and house numbers from the Google Street View dataset (right). The numbers on the left-hand column of each set 
come from the real world. The digits 0-9 are generated by the model in the style of the real-world sample.
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other characters and styles it has seen in the dataset to 
create “analogical fantasies” of other characters. 

This means we can generate handwriting not in our data 
set. For example, if the number “7” was never captured 
from a certain writer, the model can imagine how the writer 
may write it. Not just one “7”, but infinitely many slight 
variations of it, thus generating the author’s possible range 
of variation. The downside, of course, is that this paves the 
way for children to create handwritten excuse notes to 
their teacher that their parents never wrote. 

The potential for this kind of high-tech spoofing offers a 
lesson: handwritten communication—for some a profound 
symbol of the slow death of old communication 
technologies—is part and parcel of a world where AI, 
machine learning, and high-tech communication coexist. 
Writer identification poses challenges unique in the greater 
handwriting analysis and computer vision worlds, and we 
expect to see a lot of advancement in this area in the years 
to come.    Q
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What Can a Single Deep 
Learning Algorithm Say 
about a Face?
by Rama Chellappa, Rajeev Ranjan, Jun-Cheng Chen,  
Swami Sankaranarayanan, and Carlos D. Castillo

Facial analytics is a challenging problem in computer vision and has been actively researched for 
over two decades36. The goal is to extract as much information as possible from a face, such as 
location, pose, gender, age, emotion, etc., that will be useful in surveillance, human-computer 

interaction (HCI), smart cars, and other applications. In the past, different methods have been designed 
for extracting gender, pose, ID and so on. The integration of deep networks and multi-task learning is 
making it possible to extract facial analytics using a single network that shares features across multiple 
tasks and domains. 

Historically, two major tasks have dominated the facial 
analysis literature: face identification and face verification. 
Face identification aims to identify the subject identity of 
a query image or video from a set of enrolled persons in 
the database. On the other hand, face verification, given 
two images or videos, determines whether they belong to 
the same person. Since the early 1990s, numerous 
algorithms have been shown to work well on images and 
videos that are collected in controlled settings. However, 
the performance of these algorithms often degrades 
significantly on images that have large variations in pose, 

illumination, expression, aging, and occlusion. 

Unconstrained Face Recognition

An automatic face recognition system typically consists 
of the following components: (1) face detection, (2) facial 
landmark detection to align faces, (3) feature representation 
and (4) metric learning to identify a subject's identity or 
to determine two faces from the same identity or not. Face 
detection determines whether and where a face is located 
in an image. Facial landmark detection aligns faces into 
canonical coordinates in order to robustly compare queries 

to enrolled faces. Feature representations distill the salient 
and discriminative information of a face into a fixed set 
of numerical values. Finally, metric learning is a procedure 
by which we can compare the feature representations. For 
decades, the large number of published papers have gone 
through generations of change and progress, and generally 
have followed this pipeline.

Despite significant progress, the performance of 
conventional systems has not been adequate for 
deployment. Fortunately, over the last five years, methods 
based on deep convolutional neural networks (deep 
CNNs) have shown impressive performance improvements 
for object recognition13, 28 and object/face detection8, 18. 
In addition, face recognition systems based on deep 
CNNs26, 17 have yielded performance surpassing human 
recognition accuracy. One of the most well-known in the 
community is “The Labeled Faces in the Wild” (LFW) 
dataset9. This has been made possible due to the availability 
of large annotated datasets, a better understanding of the 
non-linear mapping between input images and class labels 
as well as the affordability of GPUs.
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A Different Perspective

When a human looks at a face in an image, he or she can 
detect where the face is, gender, rough pose, age, expressions, 
etc. When machines are designed to perform these tasks, 
they are often designed as independent algorithms solving 
each of these tasks. However, one can design a deep network 
that can simultaneously accomplish all of the tasks by 
sharing the deep features and exploiting the relationships 
among these tasks. This approach is called multi-task 
learning, which learns to optimize different targets for 
different tasks using the same underlying program. One 
can view such a network as akin to a group of students 
getting together to study for an exam, complementing each 
other's strengths, with the overall goal of everyone getting 
high marks. The conjecture is that learning multiple facial 
analytics tasks simultaneously results in superior 
performance of each individual task.

With that in mind, a comprehensive system for facial 
analytics that can simultaneously perform face detection, 
face alignment, face identification/verification and extract 
other details such as 3D head position and angle, gender, 
smile, and age using a single deep learning algorithm 
appears to make the most sense. We will take you through 
an “All-in-One” deep CNN approach that employs a multi-
task learning framework that exploits the synergy among 
different domains and tasks for face recognition. Such an 

approach has been demonstrated to be superior on the 
challenging IARPA Benchmark A dataset (IJB-A) and is an 
effective system.

All-in-One CNN for Facial Analytics

The All-in-One deep CNN20 is a single CNN model for 
simultaneous face detection, landmark localization, face 
recognition, 3D head pose estimation, smile detection, 
facial age estimation, and gender classification. The All-
in-One CNN architecture is shown in Figure 1. We start 
with the previously trained face identification CNN from 
Sankaranarayanan et al 25. This network is used as a 
backbone network for training the face identification task 
and shares parameters with other face-related tasks. The 
central tenet for this design choice is that a CNN pre-
trained on face identification task provides better 
initialization for a generic face analysis task, since the 
filters retains discriminative face information.

As shown in Figure 1, the tasks are then divided into two 
groups: 1) subject-independent tasks which include face 
detection, facial landmark localization and visibility, pose 
estimation and smile prediction, and 2) subject-dependent 
tasks which include age estimation, gender prediction and 
face recognition. 

Since no single large dataset is available with all the 
annotations for face bounding box, fiducial points, pose, 

Figure 1  |  Overview of the All-in-One CNN system for face recognition and facial analysis.
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gender, age, smile and identity information, we train 
multiple CNNs with respect to task-related datasets Di , 
and share the parameters among them. In this way, the 
shared parameters adapt to the complete set of domains 
(D1, D2 , … ,  Dd )  instead of fitting to a task-specific domain. 
Additionally, the total number of training samples increases 
to roughly one million, which is advantageous for training 
deep CNNs. At test time, these sub-networks are fused 
together into a single All-in-One CNN. Table 1 lists the 
different datasets used for training our All-in-One CNN, 
along with their respective tasks and sample size. The 
complete network is trained end-to-end using a software 
package developed by UC Berkeley called Caffe10.

Face Detection, Key-points Localization and Pose 
Estimation: These tasks are trained using the Annotated 
Facial Landmarks in the Wild (AFLW)12 dataset. The 
algorithm that we employ is similar to HyperFace, a single 

CNN model for simultaneous face detection, landmark 
localization, pose estimation, and gender classification. 
HyperFace consists of three modules. The first generates 
class independent region-proposals from the given image 
and scales them to an appropriate resolution. The second 
module is a CNN that takes in the resized candidate regions 
and determines whether or not it is, indeed, a face. If a 
region is a face, the network then predicts facial landmarks 
locations, 3D head pose and gender information. The third 
module is a post-processing step that iteratively proposes 
candidate regions and removes duplicate detections and 
boosts the face detection score while improving the 
performance of individual tasks.

The AFLW dataset is a large-scale, real-world dataset used 
for landmark localization. We randomly select 1000 images 
from the AFLW dataset for testing, and use the remaining 
images for training. We use a selective search29 algorithm 
to generate region proposals for faces from an image. 
Regions with considerable overlap with the ground truth 
bounding box are considered positive examples whereas 
other regions are used as negative examples for training 
the detection task.  

Gender Recognition and Smile Detection: Gender and 
smile classification are binary classification problems. The 
training images are first aligned using facial key-points 
which are either provided by the dataset or computed 
using HyperFace. Then, a simple machine learning loss 
function is used to measure the likelihood of the gender 
as male or female and presence of a smile.Table 1  |  Datasets used for training.

Dataset Facial Analysis Task # Training 
Samples

CASIA [35] Identification, Gender 490,356

MORPH [22] Age, Gender 55,608

IMDB+WIKI [23] Age, Gender 224,840

Adience [14] Age 19,370

CelebA [15] Smile, Gender 182,637

AFLW [12] Detection, Pose, Fiducials 20,342

Total 993,153

Figure 2  |  The IJB-A dataset is the new dataset after LFW to push the development of next-generation face recognition system and contains faces in 
large variations of pose, illumination, image quality, occlusion, etc.



19

VOL 8 NO 3  •   IQT QUARTERLY

Facial Age Estimation: We formulate the age estimation 
task by making the CNN learn to predict the facial age 
from a face image. It has been shown that apparent age 
estimation can be well-modeled when the standard 
deviation of age is known in a dataset. Unfortunately, 
outliers cause such models to converge slowly and perform 
poorly. The algorithm that we propose to remedy this 
dichotomy is to use a weighted combination of two loss 
functions using the standard deviation information as 
well as training example pairs that have the predicted age 
and the ground-truth age. The procedure is to first initialize 
and slowly fit the model with the known standard deviation 
of the annotated age value.

Face Recognition: We use 10,548 subjects from the CASIA 
dataset35 to train the face identification task. The images 
are aligned using HyperFace before passing them through 
the network. The neural network is then optimized to find 
the best parameters that minimize the error between truth 
labels and predictions, a loss function. The final overall loss 
L is the weighted sum of individual loss functions, i.e. 
L = ∑8

t=1t Lt ,where Lt  is the loss and t is the loss-weight 
corresponding to task t. These loss-weights are chosen 
empirically from the data.

For the testing stage, we deploy a two-stage process as 
shown in Figure 1. In the first stage, we use the selective 
search to generate region proposals from a test image, 
which are passed through our all-in-one network to obtain 
the detection scores, pose estimates, fiducial points and 
their visibility. We also use separate processes to filter out 
non-faces and improve fiducials and pose estimates. For 
the second stage, we use the obtained fiducial points to 
align each detected face to a canonical view using the 
similarity transform. The aligned faces, along with their 
flipped versions are passed again through the network to 
get the smile, gender, age, and identity information. 

Face Identification/Verification on the 
IJB-A dataset

We present the results of the proposed All-in-One CNN 
for face recognition task on the challenging IARPA Janus 
Benchmark A (IJB-A)11. The receiver operating characteristic 
curves (ROC) and the cumulative match characteristic 
(CMC) scores are used to evaluate the performance of 
different algorithms for face verification. The ROC curve 
measures the performance in the verification scenarios, 
and the CMC score measures the accuracy in closed set 
identification scenarios.

The IJB-A dataset contains 500 subjects with 5,397 images 
and 2,042 videos split into 20,412 frames. Sample images 
and video frames from the datasets are shown in Figure 
2. The IJB-A evaluation protocol consists of verification 
(1:1 matching) over 10 splits. Each split contains around 
11,748 pairs of templates (1,756 positive and 9,992 negative 
pairs) on average. Similarly, the identification (1:N search) 
protocol also consists of 10 splits, which are used to 
evaluate the search performance. In each search split, 
there are about 112 gallery templates and 1,763 probe 
templates (i.e. 1,187 genuine probe templates and 576 
impostor probe templates). The training set contains 333 
subjects, and the test set contains 167 subjects without 
any overlapping subjects. Ten random splits of training 
and testing are provided. Unlike LFW9 and YTF32 datasets, 
which only use a sparse set of negative pairs to evaluate 
the verification performance, the IJB-A divides the images/
video frames into gallery and probe sets so that all the 
available positive and negative pairs are used for the 
evaluation. Also, each gallery and probe set consist of 
multiple templates. Each template contains a combination 
of images or frames sampled from multiple image sets or 
videos of a subject. In contrast to LFW and YTF datasets, 
which only include faces detected by the Viola Jones face 
detector30, the images in the IJB-A and JANUS CS2 contain 
extreme pose, illumination, and expression variations. 
These factors essentially make IJB-A a challenging face 
recognition dataset11.

For face detection and facial landmark localization tasks, 
we present the sample results on the IJB-A dataset in Figure 
3. The results demonstrate that All-in-One CNN is able to 
detect and localize facial landmarks for face in large pose, 
illumination, and facial age variations. This attributes to 
the multi-task learning over various face datasets. In 
addition, the All-in-One CNN can get reliable estimate for 
facial age, gender, 3D head pose, and smile.

We present the identification/verification results of the 
proposed approach for the IJB-A dataset in Table 2 (page 
21). Besides using the average feature representation, we 
also perform media averaging, which first averages the 
features combing the same media (image or video) and 
then further averages the media features to generate  
the final feature representation followed by Triplet 
Probabilistic Embedding 25.

Table 2 summarizes the scores (i.e., both ROC and CMC 
numbers) produced by different face identification/
verification methods on the IJB-A dataset. We compare 
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the results with DCNNbl (bilinear CNN24) DCNNpose (multi-
pose DCNN models2), Neural Aggregation Network for 
Vidoe Face Recognition34, DCNN3d

16, template adaptation 
(TP)7, DCNNtpe

25, and those reported recently by NIST 
where JanusB-092015 achieved the best verification results, 
and JanusD-071715 the best identification results1. From 
the ROC and CMC scores, we see that All-in-One CNN 
achieves good performances for face identification/
verification tasks. This can be attributed to the fact that 
the DCNN model does capture face variations over various 
face dataset and generalizes well to a new dataset. In 
addition, the proposed approach achieves better and 
comparable face identification/verification than without 
applying any fine-tuning procedures using the training 
dataset as Chen (et al) did to boost their performances4, 5. 
We conjecture that with better-detected face bounding 
boxes and fiducial points from All-in-One CNN, we can 
reduce the false alarms caused by face detection and 
perform better face alignment to mitigate the domain shift 
between the training and test set. On the other hand, TP 
adapted the one-shot similarity framework33 with linear 

support vector machine for set-based face verification and 
trained the metric on-the-fly with the help of a pre-selected 
negative set during testing. Although TP achieved 
significantly better results than other approaches, it takes 
more time during testing than the proposed method since 
our metric is trained on-line and requires much less time 
for testing than TP.

Run Time

We implemented our All-in-One network on a machine 
with eight CPU cores and GTX TITAN-X GPU. It takes an 
average of 3.5s to process an image. The major bottleneck 
for speed is the process of generating region proposals 
and passing each of them through the CNN. The second 
stage of our method takes merely 0.1s of computation 
time. We are currently working on faster implementations 
of face detection algorithms.

Conclusion

In this article, we presented a multi-task CNN-based 
method for simultaneous face detection, face alignment, 

Figure 3  |  Sample results of the all-in-one CNN for the IJB-A dataset with detected face bounding boxes, fiducial points, and identity along with 3D head 
pose, gender, smile, and facial age estimation. Although the algorithm predicts identity, age, gender and smile attributes for all the faces, we show them 
only for subjects that are present in the IJB-A dataset for better image clarity.
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pose estimation, gender and smile classification, age 
estimation and face verification and recognition. This 
work demonstrates that subject-independent tasks 
benefit from multi-task learning and network 
initialization from face recognition task. Experimental 
results demonstrate that the performance of the 
proposed system on the IJB-A dataset is comparable to 
other state-of-the-art approaches and much better than 
COTS and GOTS matchers. This clearly suggests that 
MTL helps in learning robust feature descriptors.

Given sufficient number of annotated data and GPUs, 
DCNNs have been shown to yield impressive performance 
improvements. Still many issues remain to be addressed 
to make the DCNN-based systems robust and practical, 
such as reducing reliance on large training data sets, 
handling data bias and degradation in training data, 
incorporating domain knowledge, reducing the training 
time when the network goes deeper and wider, and 
building the theoretical foundations to understand the 
characteristics and behaviors of DCNN models5.   Q

Table 2 |  Results on the IJB-A dataset. The TAR of all the approaches at FAR=0.1, 0.01 and 0.001 for the ROC curves (IJB-A 1:1 verification). The Rank-1, 
Rank-5, and Rank-10 retrieval accuracies of the CMC curves (IJB-A 1:N identification). We report average and standard deviation of the 10 splits for all-
in-one CNN, DCNNours and after Triplet Probabilistic Embedding, DCNNours+tpe. All the performance results reported in [1], JanusB (JanusB-092015), Janus 

D (JanusD-071715), DCNNbl [24], DCNN3d, DCNNfusion [5], [16], NAN [34], DCNNpose
 [2], DCNNtpe

 [25], and TP [7].

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence 
Advanced Research Projects Activity (IARPA), via IARPA R&D Contract No. 2014-14071600012. The views and conclusions 
contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or 
endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized 
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.

IJB-A-Verif [31] JanusB [1] JanusD [1] DCNNbl [24] NAN [34] DCNN3d [16]

FAR=1e-3 0.514 0.65 0.49 - 0.785 0.725

FAR=1e-2 0.732 0.826 0.71 - 0.897 0.886

FAR=1e-1 0.895 0.932 0.89 - 0.959 -

IJB-A-Ident [31] JanusB [1] JanusD [1] DCNNbl [24] NAN[34] DCNN3d [16]

Rank-1 0.820 0.87 0.88 0.895 - 0.906

Rank-10 - 0.95 0.97 - - 0.977

IJB-A-Verif DCNNpose [2] DCNNfusion[5] DCNNtpe[25] DCNNours DCNNours+tpe TP [7]

FAR=1e-3 - 0.76 0.813 0.787 0.823 -

FAR=1e-2 0.787 0.889 0.9 0.893 0.922 0.939

FAR=1e-1 0.911 0.968 0.964 0.968 0.976 -

IJB-A-Ident DCNNpose [2] DCNNfusion[5] DCNNtpe[25] DCNNours DCNNours+tpe TP [7]

Rank-1 0.846 0.942 0.932 0.941 0.947 0.928

Rank-10 0.947 0.988 0.977 0.988 0.988 0.986
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That said, understanding and counteracting the limitations 
of such systems in the context of their deployment is less 
well understood, and that is, in part, due to the limitations 
of the traditional metrics that we use to evaluate the 
performance of the system. Biometric performance metrics 
examine performance in a series of trade-offs — typically, 
but not uniformly, as a compromise between false accepts 
rates (FAR) and false reject rates (FRR). These metrics 
alongside the operational threshold make the determination 

of an established set of performance metrics for the 
biometric system. We use these metrics to determine, in 
some part, the success or failure of the biometric system, 
or to compare one biometric system with another.  

Challenges in a Biometric System  
of Systems

Over the past 15 years, researchers at the International 
Center for Biometric Research (ICBR) at Purdue University 

Human Biometric System 
Interaction (HBSI) —  
A Complementary Approach 
to Examining Biometric 
Performance
By Stephen Elliott

Biometrics are the ability to recognize individuals based on their physiological or 
behavioral characteristics, such as fingerprints, face, iris, and voice1. However, this 
definition belies the nature of that interaction with the individual, and the purposes 

for that interaction. While the biometric component is the ability to recognize an individual, 
in many cases that component is functioning in a much broader system of systems, whose 
purpose it is to carry out the authentication, security, admission, and other activities. It is the 
broad-based nature of biometrics — the fact that authentication exists on some platforms, 
from on the phone ( fingerprint, iris, voice, multi-factor authentication), to large-scale 
customs and border protection (CBP) applications that make the development of biometrics 
such an intriguing story for the better part of 20 years. 
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in collaboration with other institutions, have examined 
the role of the interaction of the human with that biometric 
system, within the context of the larger system in which 
the biometric component operates in. Moreover, as systems 
become more complex, the interaction has evolved into 
a framework of interaction models that provide additional 
information in determining the performance of the 
biometric system, in the context of that operation. As such, 
these metrics complement the traditional biometric 
performance metrics. Others too, have also examined the 
role of the user and their interaction with the biometric 
sensor. Researchers at the National Institute of Standards 
and Technology (NIST) have made several contributions 
in this field2-9, as has Coventry who first discussed the 
usability of biometrics within the context of an ATM10, 
followed by two other articles11,12. 

At the most fundamental level, the user in an overt 
biometric system will interact with a biometric sensor, 
such as a fingerprint sensor, and either do it correctly or 
incorrectly14. This determination of a correct or incorrect 
presentation is impacted by several factors that include 
how the individual presents their fingerprint to the sensor, 
their ability to concentrate during the task, and the 
environment in which they are doing the task. The 
determination of what causes the correct or incorrect 
presentation is also of interest to integrators of biometric 
systems. Take the scenario of a CBP control booth for 
immigration purposes, where several biometric modalities 
are deployed — fingerprint, face, and in this example, iris. 
The success of the biometric system in this case relies on 
the appropriate level of quality of the biometric being 
presented, which directly impacts the performance. In 
this scenario, the user must interact with more than just 
the biometric component; they have to communicate with 
the border control officer, present their passports, 
completed paperwork and answer questions. Those 
additional interactions drive the performance of the overall 
biometric system as well. Alongside the border, the booth 
scenario is the automated border security gate (ABC), 
which relies on the individual interacting with the system 
without prompting. When comparing the performance of 
these two systems, additional contextual information has 
to be provided for a valid assessment to be completed. 

Thus, the interaction of one individual with one biometric 
sensor has now evolved into the interaction of many 
individuals with many sensors in a much larger system, 

which becomes quite complicated to disassemble the 
various attributes that can be impacting the biometric 
system performance. 

Interaction Framework

The Human Biometric Sensor Interaction (HBSI) framework 
was born out of this need to understand the impact of the 
human within a biometric system. Initial studies nearly a 
decade ago were based on a standalone fingerprint sensor, 
whose interaction was a swipe across a very thin silicon 
sensor, at a uniform speed. The research team at the ICBR 
noticed various issues with interaction — and were not 
the first group to do this. As mentioned, others have also 
examined the role of the user and their interaction with 
the biometric sensor. Researchers at NIST as well as 
Coventry made early contribution to this field2-9, specifically 
related to the usability of a biometric system within the 
context of customer acceptance13. Customer acceptance 
can also be related to the HBSI metrics. However, at Purdue, 
issues of interaction across a broad range of modalities, 
and classified particular aspects of the interaction into 
correct, or incorrect, presentations have been examined. 

If you take the border control scenario again and examine 
just one biometric modality — iris recognition, the correct 
presentation would be if the user is standing in the 
appropriate location in the volume, and looking at the 
camera. An incorrect presentation will be if the user is not 
watching the camera for whatever reason. Automatic 
classification of this interaction enables a series of metrics 
to be collected that quantify the potential errors or issues 
within that iris subsystem. This example illustrates the 
first level of the framework and comprises the following 
definitions. For incorrect presentations, a defective 

Thus, the interaction of one 
individual with one biometric 
sensor has now evolved 
into the interaction of many 
individuals with many 
sensors in a much larger 
system, which becomes 
quite complicated...
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interaction (DI) occurs when a user makes an incorrect 
presentation that is not detected by the biometric system15. 
In some cases, the biometric system does not recognize 
that the user is trying to present a biometric sample. This 
can occur in an iris collection environment if the user is 
looking in the wrong direction so that the system does not 
detect their eyes.

A concealed interaction (CI) occurs when an incorrect 
presentation is detected by the biometric system but is 
not classified correctly as an error15. A CI is a mistake that, 
despite being caused by the user, is accepted into the 
biometric system as a successfully processed sample. CI’s 
are a critical error because they should be rejected by the 
biometric system but are not. An example of a CI would 
be in fingerprint recognition if the user is supposed to 
place their right index finger but uses their left index finger 
instead. The system will accept the sample as long as 
minimum quality and minutiae are met but cannot 
differentiate between the two fingers. 

A false interaction (FI) is an incorrect presentation that 
is detected by the biometric system, but unlike a CI, is 
correctly handled as an error15. In an FI, the biometric 
system is performing as expected and rejecting the 
incorrect presentation from being processed. Upon 

detection of an FI, the biometric system may respond to 
the user with feedback such as an error message or allow 
for a retry. 

From the perspective of a correct presentation, the 
framework returns the following metrics — a failure to 
detect (FTD) is a proper presentation made by the user 
that is not detected by the biometric system15. The result 
of an FTD is the same as a DI, but in this case, the fault 
lies in the biometric system, rather than the user. The user 
will have correctly presented their biometric sample but 
the system does not detect it, and the state will remain 
unchanged. An example of this is in fingerprint recognition 
if the user successfully places their right index finger but 
due to the system error, it does not detect that any 
placement has occurred. 

A failure to process (FTP) is a correct presentation made 
to the biometric system that encounters an error when 
the system processes it. Due to this processing error, the 
biometric template is not created, and the sample is not 
saved to the database. Reasons for this error include system 
processes such as segmentation, feature extraction, or 
quality control15. This occurs in fingerprint recognition if 
the system requires a certain number of minutiae points 
or a quality level to be accepted. Although the biometric 

Figure 1  |  Framework of the HBSI Connectors



27

VOL 8 NO 3  •   IQT QUARTERLY

sample was presented correctly, a characteristic of the 
fingerprint such as age or temperature does not meet the 
system’s tolerances and is rejected. 

A successfully processed sample (SPS) is a correct 
presentation that is detected by the biometric system and 
successfully processed as a biometric sample. The biometric 
sample meets system specifications, allowing for the 
template to be created or the sample to be saved to the 
database. An example of an SPS occurs in fingerprint 
recognition when a user correctly places their right index 
finger which meets the biometric system’s requirements 
and is subsequently saved to the database. The SPS rate 
is calculated by the total number of SPSs divided by the 
total number of attempts.

These terms also work for behavioral biometrics, even 
though behavioral biometrics like signature and voice add 
in continuous streams of data — how long you sign or 
intonation of your voice. Researchers at the University of 
Kent, Canterbury contributed to the development of the 
behavioral model. As biometrics exist in a larger system 
— for example, border control, the token HBSI model was 
developed to take into consideration the passport. In the 
original model, we make the assumption that the user was 
a genuine actor, and in reality, this is not always the case. 

Thus, an additional framework was constructed for the 
impostor. This structure morphs from the particular 
interaction task of the user and the biometric system to 
that of the entire system in which the biometric system is 
performing and impacted in. 

Moreover, in building the framework, the ICBR has 
constructed connectors that provide additional context 
to the scenario. Such sensors include environmental data 
from IoT sensors, system data from previous interactions 
(such as image quality, interaction data, user behavior, and 
characteristics) to provide more contextual information 
so that the system can assess anomalies in the performance 
of the biometric system. An example of the integration is 
shown in Figure 1 — where the connectors are illustrated 
across the multi-modal biometric system.

Furthermore, these connectors provide real-time analytics 
to dashboards so that individuals can be assessed across 
a broad range of metrics. In the scenario above, the ICBR 
has integrated the following sensors — environmental 
sensors; body posture sensors using the Kinect; throughput 
and timing sensors, biometric devices including 10-print, 
iris and face; as well as audio recordings including 
conversational feedback using commercially available 
cognitive services that breakout cognitive insights, speech 

Figure 2  |   Bird's eye view of dashboard.
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sentiment (negative, positive and neutral) of each speaker, 
biometric image quality (ISO/IEC JTC 1 Image Quality 
Standards for Face, Iris, and Fingerprint), augmented with 
face emotion algorithms (neutral, happiness, sadness, 
anger, disgust, fear and surprise). Figure 2 on the previous 
page is an image of the dashboard illustrating the booth 
from bird's eye view, with gender, ethnicity demographics, 
and in this case luggage characteristics (rollaway, shoulder 
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bag), and on the bottom right-hand side, the human 
biometric sensor interaction errors. All of these are 
automatically classified as individuals enter the booth and 
start a transaction. 

Therefore, this framework highlights the integration of 
many different sensors and algorithms to provide better 
context in the performance of the biometric system.  Q
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Big Data Machine Learning Biometrics

To find the beginning of the story we need to travel all the 
way to the Arctic Circle in northern Sweden to Luleå 
University of Technology. In 2006, an undergraduate 
behavioral biometrics project, with help from the 
university’s innovation team resulted in three students 
founding the spin-out, BehavioSec. The idea was 
uncomplicated, while the technology, the algorithm, was 
not. Would normal end user interaction with a device or 
keyborad be enough to verify the identity of a human 
being? Are we that unique?      

Behavioral Biometrics

Human gestures can be repeated in ways that may look 
similar to the naked eye, however when they are measured 
by a behavioral algorithm, they look totally distinct. The 
way a person holds, swipes, or types on a screen or keyboard 
is a source of data for user authentication and verification. 

Perfect, Just The Way 
You Are
By Ingo Deutschmann and Neil Costigan

As humans, we are taught that we are the weakest link when it comes to IT security. 
Many attempts have been made to remove the human factor from the security 
equation, but no one has succeeded. If we look at the security we're used to in our 

devices and services, it is based on thinking from the 1970s, where a binary 'yes' or 'no' at 
login made more sense. In our always-on culture, that kind of thinking is no longer adequate. 
Equally, adding extra steps can be a good way to boost security, but also gets in the way of 
user experience. It is ironic, then, that the human factor, the so-called ‘weakest link’ can be 
the solution to the security challenge, simply by humans behaving normally.

Behavioral biometrics technology doesn’t measure just 
one gesture, but a whole range of data inputs, with a high 
level of accuracy and precision, and can do so throughout 
a user session. This new capability, to be able to continuously 
authenticate an end user, not just at login, is intriguing to 
a wide range of organizations, as they see a solution that 
can protect against account takeover, identity theft, and 
even internal fraud.    

Behavioral biometrics is the measurement of human 
behavior to verify the identity of a person. 

BehavioSec collects data from a wide range of behaviors 
and actions, such as key flight, accelerometer, gyroscope, 
hit zone, and others. The combination of these data sources 
creates a sophisticated AI that has proven to be 
commercially viable.

Different types of sensors provide different, but 
complementary mechanisms to profile a user: 
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the way to look at the authentication process, but the 
prospects wanted a solution to replace the old non-
functional silver bullet, “the password”.

Even though the mindset is changing to favor the new 
risk-based approach, countless hours have been spent on 
educating senior security executives where the industry 
is going.

DARPA

In 2011 DARPA published a Broad Agency Announcement 
for research in Active Authentication, novel ways of 
validating the identity of the person at the console that 
focus on the unique aspects of the individual. BehavioSec 
was chosen as the only non-U.S. vendor to participate in 
the succesful project to continuously verify the end user 
with behavioral biometrics.

The early success with banks in Northern Europe was 
based on the BehavioSec machine-learning algorithm 
where the the big data number crunching was executed 
on a server. BehavioSec proposed  the technical challenge 
to DARPA to re-engineer the solution to work offline on 
the device itself, an autonomous AI. Since this initial 
DARPA project BehavioSec has proposed and delivered 

Figure 1  |  BehavioSec collects data from a wide range of behaviors and actions, such as key flight, accelerometer, gyroscope, hit zone, and others. The 
combination of these data sources creates a sophisticated AI that has proven to be commercially viable.

•  �Keyboard entry timings look at very accurate 
measurements of when a key was pressed, when it was 
released, how long between pressing each key and the 
sequence in which they were pressed

•  �Mouse provides sequential 2D coordinates and thus a 
speed of deflection and movement pattern

•  �Gyroscope and Acclerometer provide 3D coordinate 
sequences, and thus velocities and patterns for the actual 
movement of a mobile device

•  �Surfaces provide the coordinates and measurements for 
2D movements, as well as detailed and valuable 
information on how much pressure a user exerts, and 
exactly where they press.

Learning by Doing

BehavioSec’s first set of customers came from commercial 
banking and implemented the solution into their online 
banking sites, primarily for Fraud Forensics. It gave them 
the ability to, in real-time, look at a specific session and 
see behavior profiling down to each keyboard stroke or 
mouse movement. One early lesson was that the mindset 
of security is that it is all about replacing the old, rather 
than designing the new. Behavioral biometrics is disrupting 
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the same solution not only in desktop environments but 
in mobile and handset devices and a new contract will 
continue in 2017 to explore new ideas in behavioral 
biometrics. One factor that has worked in our favor is 
Moore’s law; it has been kind to us as the computing power 
on a smartphone has skyrocketed. 

The Power of Choice

The modern end user of today has high expectations on 
user friendliness, and they know that they are in a power 
position to get what they want. Whenever end users are 
offered a choice they will act with brutal decisiveness: One 
BehavioSec client operates as an identity provider for 
banks with a combined user base of 7 million. When they 
started offering strong authentication with a mobile app 
supported by our behavioral biometrics technology, they 
saw an exponential growth in usage from 3-4 transactions 
a month to 20-25.

This highlights the potential for user experience successes 
and how the disruption of financial services is already 
in progress.

Risk Based Authentication

Product, customer, and end-user experience teams are 
continuously working to decrease friction in order to meet 
the high expectations of busy, multi-tasking users. Adaptive, 
dynamic, layered security helps you to create authentication 
processes that align with these expectations.

Fewer than 30 percent of us log out of our accounts when 
we’re finished using a service. Our mobile apps are 
especially vulnerable, now that social media services also 
act as identity providers, and will soon be entering the 
payments space. Security needs aren’t all the same, even 
within these individual services. For example, checking 
your bank balance is not as risky as carrying out a large 
transfer or changing account details.

The Right Level of Security at the  
Right Time

BehavioSec analyzes every session from start to finish, 
continuously profiling behavioral patterns. The system 
creates a profile match score based on a range of factors 
by comparing it to stored results. Is this person typing as 
they normally do? Are they in a recognized location, using 
their usual device? This is monitored throughout the 
session so that security is an ongoing process, not merely 
a step.

From Yes or No to “If This then That”

As a user interacts during a session, the similarity score 
is fed into your risk engine, and your security or fraud 
team determines what happens next. If the score is high, 
the system allows the user through. If it’s not high enough, 
that’s when you can add further steps using the other 
layers in your system. If the score is very low, your system 
can log the user out completely.

If Not You, then Who?

BehavioSec already has proven to successfully verify that 
the right person requested access. The holy grail of fraud 
prevention is to be able to transform end user behavior to 
narrow down the group of known users who are the prime 
suspect for a potential fraud. This is accomplished by 
efficient machine learning capabilities and applying 
artificial intelligence to user profiles. Our user profile’s 
level of sophistication enables BehavioSec to find the 
needle in the haystack.

How to Make an Impact 

The BehavioSec R&D unit has stayed in Luleå and is now 
a neighbor to Facebook’s first European datacenter. The 
remote location has the potential to be a limiting factor 
on innovation and knowledge transfer, but for BehavioSec 
it has worked in our favor. 

As the solution is software only and the technology is based 
on standards,  BehavioSec has become an API company 
by heart and today the Luleå R&D hub is running projects 
and implementations across the globe. 

Entering Mainstream

Apart from the research completed with DARPA, the 
early adopters of our technology are the commercial 

Product, customer and 
end-user experience teams 
are continuously working 
to decrease friction, in 
order to meet the high 
expectations of busy,  
multi-tasking users.
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banks that have the challenge of meeting the needs of 
their services towards an ‘always-on’ paradigm. This 
innovative trend was first embraced by financial 
technology providers (“FInTech”), and is now being 
followed by other verticals in a movement independent 
of geographical location. 

Behavioral biometrics will soon be mainstream and utilized 
by most service providers online. BehavioSec is conducting 
pilots at handset manufactures, payments providers, 

e-learning platforms, customer relationship managers 
(CRM’s) and others; the list is growing by the week. The 
thing that these verticals have understood is that the 
success of a service is through the ambition of their end-
users to have an efficient  customer journey. Security has 
to be smart by design, and recognize differences in your 
normal user behavior: It should be able to learn that you 
are perfect, just the way you are!   Q

Figure 2  |  The BehavioSec scatter plots above show before and after BehavioSec algorithm analasis. Left:  clusters of processed end user data from 15 people 
typing one same password where each dot represents one session. The end user behavior profile cluster is a result of a transformation of 22 dimensions that 
is simplified into 2 dimensions. 

Pre analysis BehavioSec analysis

Dr. Neil Costigan is Principal Investigator for DARPA BAA 12-06 Phase 1 and BAA 13-12 Phase 2. Dr. Constigan is a software 
development professional with over 15 years’ experience. Dr. Costigan is CEO at BehavioSec. Former background as VP R&D for 
Security products at Gemplus, will add into the team his knowledge in security software development as well as his experience 
from the Swedish start-up company Celo Communications. Neil also adds his academic credibility as Ph.D. in computer 
security from the University of Dublin. 

Ingo Deutschmann is a security professional with more than 15 years’ experience in development, consulting and product 
services. Deutschmann is the Business Development Director DACH at BehavioSec. Former background as General Manager 
Germany at Gemplus, he will add to the team his knowledge in security software development as well as his experience from the 
Swedish start-up company Celo Communications and German DEH GmbH, where he was responsible for the R&D operations. 
Ingo was co-developer of the hardware antivirus solution ExVira. He is a Mathematician from the University of Jena, and holds 
worldwide patents for a smart card reader.



From the IQT Portfolio

Brainspace is focused on a singular mission: creating machine learning that accelerates 

human leaning. Brainspace’s revolutionary approach to processing information helps 

surface insights and avenues of inquiry that are difficult to find with any other solution. 

Brainspace has been an IQT portfolio company since June 2016.  

www.brainspace.com 

SnapDNA enables DNA analysis in a fraction of the time and with far greater specificity, 

convenience, accessibility and affordability than current tests. This simple concept is enabled 

by highly defensible, proprietary technology and demonstrated with some of the most 

stringent DNA tests. SnapDNA has been an IQT portfolio company since November 2012.

www.snapdna.com

Fuel3D is a developer of advanced 3D scanning systems and solutions.  Originally developed 

for the medical imaging sector, Fuel3D technology has been adapted for the broader 3D 

market, with the goal of bringing the benefits of point-and-shoot 3D imaging to consumers, 

professionals and businesses. The technology combines photometric stereo imaging with 

stereoscopic imaging to produce a single 3D image. Fuel 3D has been an IQT portfolio 

company since December 2014.  

www.fuel-3d.com

The IQT Quarterly examines trends and advances in technology. IQT has made a number 
of investments in innovative technologies, and several companies in the IQT portfolio are 
garnering attention for their unique solutions. 




