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Executive Summary 
 

Genomic data are becoming increasingly valuable as we develop methods to utilize the 
information at scale and gain a greater understanding of how genetic information relates to 
biological function.  Advances in synthetic biology and the low cost of sequencing are increasing 
the amount of privately held genomic data.  As the quantity and value of private genomic data 
grow, so does the incentive to acquire and protect such data, which in turn creates a need to 
store and process these data securely.  

This project explores the limitations, opportunities, and capabilities of secure computation 
techniques applied to DNA sequence comparisons. Using homomorphic encryption (a software-
based encryption approach) the Secure Interrogation of Genomic DataBases (SIG-DB) protocol 
was developed to enable searches of databases (DB) of genomic sequences with an encrypted 
query sequence without revealing the query sequence to the database owner or any of the 
database sequences to the Querier. Our results show that the SIG-DB algorithm returns an 
accurate assessment of the similarity of queries to databases of interest. The computational 
runtime and information leakage were compared between a fully homomorphic approach using 
the Microsoft SEAL cryptosystem and a partially homomorphic approach using the Paillier 
cryptosystem.  SIG-DB is the first application that we are aware of to take advantage of locality-
sensitive hashing and homomorphic encryption to allow generalized sequence-to-sequence 
comparisons of genomic data. 

We also explored an alternative approach that uses hardware-based secure computation, 
specifically Software Guard eXtension (SGX), by Intel®. We were unable to complete a prototype 
at this time due to the immaturity of the technology.  However, our research findings indicate 
that SGX has the potential to enable a cloud-based secure computation system with, 
theoretically, minimal information leakage and similarity scoring execution times near equivalent 
to plaintext comparisons.  Much research remains to be done to fully understand the operational 
and security limitations of the system.  

We briefed government stakeholders on our prototype and findings at a recent B.Next event.  
Attendees expressed strong support for continued work on homomorphic encryption for secure 
interrogation of genomic databases.  The participants provided valuable feedback on the tool 
and numerous use cases they encounter that could be transformed by this approach.  Although 
the algorithm was developed specifically for microbial genomics comparisons, SIG-DB could be 
useful for a number of applications, including healthcare, human genomics, organizational 
collaborations, and more.   
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Background 
 

Genomics – the ability to read, write, and edit DNA and RNA sequences– is a cornerstone of the 
biological revolution.  Important applications of genomics during a disease outbreak include 
diagnostics, biometrics for patient identity, discovery of previously unknown pathogens, and 
mapping the origin, evolution and physical spread of pathogens.  Sequencing the genome of a 
pathogen throughout the course of an outbreak is therefore a core capability.  While the cost of 
sequencing has plummeted over the last decade, there still remain technical and programmatic 
challenges to fully exploit sequencing to combat disease outbreaks.    
 
In FY17, B.Next initiated GEMstone, a project focused on identifying opportunities to improve 
analysis of pathogen genome sequences1 and explore field-based use of sequencing during 
epidemics2.  We focused on two key unsolved problems: (1) determining whether a pathogen 
has been genetically engineered based on signatures embedded in its genome sequence; and (2) 
exploring the requirements for the field use of “portable” DNA sequencing instruments to 
enhance epidemic management.  To that end, we hosted a technology focus day and led two 
roundtable discussions to explore the current state of genomic analysis for outbreak 
management, with the goal of identifying challenge projects for FY18.   During the course of our 
discussions with experts, we learned that some of the problems a challenge project might 
address include:   

 
• Access to known, natural (unengineered) sequence data, which is increasingly privately 

owned and closely held.   
• Access to large databases of engineered DNA sequences, which are predominantly the 

proprietary product of synthetic biology companies.  
• Automated methods for detecting signatures of genetic engineering in genomic 

sequences.  (B.Next focused on this challenge in FY18 project “GEMstone 2.0: Detecting 
Evidence of Genetic Engineering”) 

 

Accessing Biological Data 
Exploiting genomic information has become an important component of the identification, 
characterization, and attribution of an unknown biological sample. To do so, the necessary 
bioinformatic analyses require known genomic data against which to compare the sample’s 
genomic data.  However, a growing amount of genomic information is privately held and 
proprietary. There are many reasons entities may be unwilling to share this data or make it 
discoverable, including IP protection and fear of liability. For example, the rapidly growing field 

                                                           
1 The report from project GEMstone can be found on the B.Next website: 
https://www.bnext.org/article/roundtable-interrogation-of-suspect-biological-samples/  
2 The report from the portable sequencing roundtable can be found on the B.Next website: 
https://www.bnext.org/article/roundtable-portable-sequencing/  
 

https://www.bnext.org/article/roundtable-interrogation-of-suspect-biological-samples/
https://www.bnext.org/article/roundtable-portable-sequencing/
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of synthetic biology is transforming the marketplace ($3.9B in 2016; projected to grow to $11.4B 
by 20213).  In particular, synthetic biology is transforming industrial practices, where 
microorganisms are exploited to produce commercial products, resulting in customized microbes 
and unique genomic data. With that comes fierce corporate competition, and the genomic 
information becomes proprietary.   

The proliferation of private DNA sequence databases could hinder the US Government from 
comparing their sequence data to a large portion of known DNA sequences, both native and 
engineered. The current process for government agencies to query a privately held database 
requires a complex legal agreement between the agency and the private entity.  Furthermore, 
due to the security concerns around releasing information about a sample under investigation, 
the private entity will likely need a security clearance or have cleared personnel to work with the 
government investigation.  This is because no encryption techniques or secure hashing of query 
sequences are currently in use to enable masking of the query sequence.   
 

Need for Secure Genomic Computation Methods 
Data in storage can be protected by hardware- or software-based encryption, but sensitive data 
is vulnerable during processing.  Therefore, there is a need for methods, including search and 
comparison methods, which permit the processing of data while preserving security. Secure 
genomic computation methods would allow the biodefense community (and government, 
broadly) to explore, and potentially use, the genomic information being generated and held in 
the private sector.  This capability could reduce the time to respond to a biological event, whether 
natural or deliberate, by increasing the quantity of data used during critical bioinformatics 
analyses, and our understanding of it.   Additionally, secure genomic comparison methods might 
enable government agencies to exploit data at other agencies or within their own agency that is 
currently unreachable because of differing security classifications.  

The utility and impact of secure genomic computations goes beyond biodefense.  Genomic 
information is becoming valuable to a variety of applications, including healthcare.  There is 
inherent tension between the Health Insurance Portability and Accountability Act (HIPAA) 
requirements for patient data privacy, and the public health or scientific utility of genomic data.  
For example, researchers who want to study the genetics of disease may wish to compare patient 
genome databases in a way that allows data mining while complying with HIPAA obligations.  

                                                           
3 Flores Bueso Y, Tangney M. Synthetic Biology in the Driving Seat of the Bioeconomy. Trends Biotechnol [Internet]. 
Elsevier; 2017 Nov 16;35(5):373–378. Available from: http://dx.doi.org/10.1016/j.tibtech.2017.02.002 
 

http://dx.doi.org/10.1016/j.tibtech.2017.02.002
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Because human genomes are highly conserved, much of the existing work is on methods for 
assessing genomic variation at the single nucleotide polymorphism4,5 or causal variant6 level.  

The impact of the microbiome on human health7,8 is an active area of research. As we expand 
our understanding of the microbiome, our personal microbial fingerprint may become part of the 
data stored in electronic health records9. Therefore, we may arrive at a consensus that a person’s 
microbiome is as important to protect as a person’s genome.     

Project Overview 
Project SIG-DB is a collaborative project that engaged expertise from all four IQT Labs (B.Next, 
Lab41, CyberReboot, and CosmiQ Works). We explored the application of secure computational 
information sharing techniques to enable a “query in place” approach while still maintaining the 
privacy of both query and database entities.  We focused on two approaches: (1) Homomorphic 
Encryption – software based, computational techniques to mask both the query sequence and 
returned results; and (2) Security Enhanced Third Party – a private entity that enables direct 
comparison of sequences using a cloud-based environment equipped with Software Guard 
eXtension (SGX). SGX is a commercial, hardware-based security solution that protects code and 
data using protected areas of execution in memory (enclaves).   

We developed a proof-of-concept algorithm that leverages homomorphic encryption to 
demonstrate the feasibility of such an approach.  The opportunity, advantages, and limitations 
of the Security Enhanced Third Party approach were also explored and our informed opinion of 
its applicability is included in this report.  

  

                                                           
4 Kim M, Lauter K. Private genome analysis through homomorphic encryption. BMC Med Inform Decis Mak. 
BioMed Central; 2015;15(5):S3. 
5 Ziegeldorf JH, Pennekamp J, Hellmanns D, Schwinger F, Kunze I, Henze M, Hiller J, Matzutt R, Wehrle K. BLOOM: 
BLoom filter based oblivious outsourced matchings. BMC Med Genomics. 2017 Jul;10(2):44. PMID: 28786361  
6 Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving genomic diagnoses without revealing patient 
genomes. Science (80- ). 2017 Aug 18;357(6352):692 LP-695. PMID: 28818945  
7 Goodrich JK, Davenport ER, Clark AG, Ley RE. The Relationship Between the Human Genome and Microbiome 
Comes into View. Annu Rev Genet [Internet]. Annual Reviews; 2014 Jan 13; Available from: 
https://doi.org/10.1146/annurev-genet-110711-155532  
8 Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet 
[Internet]. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.;; 2017 Aug 
21;18:690. Available from: http://dx.doi.org/10.1038/nrg.2017.63  
9 Chuong KH, Mack DR, Stintzi A, O’Doherty KC. Human Microbiome and Learning Healthcare Systems: Integrating 
Research and Precision Medicine for Inflammatory Bowel Disease. OMICS. United States; 2017 Mar; PMID: 
28282257 

https://doi.org/10.1146/annurev-genet-110711-155532
http://dx.doi.org/10.1038/nrg.2017.63
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Methods 
 
Assumptions 
 
For this project, the team made the following assumptions prior to developing the algorithm:  

• The SIG-DB protocol will be used between two parties: a Querier and a Database Owner.  
• The Database Owner is “willing-but-unable” to share their genomic data without having 

a way to protect their data. 
• The Querier is not intending to hide the fact they are searching a Database. This protocol 

is not intended to be used without the Database Owner being involved in the execution.  
• Neither the Querier nor the Database Owner want to divulge any sequence data. 

However, it may be acceptable if some information is learned about the database, such 
as number of entries in the database, maximum length of sequences in the database, and 
the level of diversity among the sequences in the databases.   

• It is also expected that the time to result does not need to be within minutes.  An 
acceptable time to result (from start to finish) could be hours to days, depending on the 
specific use case.  

• For highest impact, no (or limited) expertise in encryption or genomics is required to 
operate the tool. However, the user should have basic computing skills equivalent to 
operating standard commercial software.  

• The Querier will have their own policies or procedures in place for what to do in response 
to the tool’s reported similarity scores.  For example, if a sufficiently similar sequence is 
found based on the threshold set by the Querier, then a possible next step in a forensic 
investigation would be to get a warrant to obtain the database. 

• Both the Querier and the Database Owner have compute infrastructure to execute the 
encryption/decryption and the scoring, respectively.  

 
 
Selecting Approaches for Secure Computation 
Software-based approaches. Several approaches have been published that demonstrate 
software-based, secure, multi-party computation, including Yao’s protocol,10,11 secure fault-
tolerant protocols, 12 oblivious transfer,13 and many others.  In recent years, the field of secure 
computation has shifted towards improving the performance of such methods for specific 
applications (e.g. electronic voting, electronic auctions, sharing of signature or decryption 
functions, private information retrieval, etc…), largely driven by the computational expense that 

                                                           
10 Yao AC. Protocols for Secure Computations. IEEE 1982.  http://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf  
11 Yao AC. How to generate and exchange secrets. Foundations of Computer Science 1986.  
DOI:10.1109/SFCS.1986.25   
12 Galil A, Haber S, Yung M. Cryptographic Computation: Secure Falut-Tolerant Protocols and the Public-Key Model. 
Advances in Cryptology 1988: p135-155. https://link.springer.com/content/pdf/10.1007%2F3-540-48184-2_10.pdf  
13 Kilian J. Founding cryptography on oblivious transfer. Proceedings of the twentieth ACM symposium on Theory 
of computing 1988: p20-31. DOI: 10.1145/62212.62215  
 

http://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf
https://doi.org/10.1109/SFCS.1986.25
https://link.springer.com/content/pdf/10.1007%2F3-540-48184-2_10.pdf
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has limited the use for many of these protocols. Several approaches could be chosen for the 
application we are focused on in this project (and others beyond what we tried should be 
explored), but we chose to focus on homomorphic encryption for the software-based approach.  
 
Homomorphic encryption (HE)14,15,16, 17 is a unique class of methods that allows a piece of 
information to be encrypted and shared, operated upon, and an answer returned without ever 
revealing the underlying information. The encrypted data can only be revealed to the owner 
using their private key. It represents a method of growing interest to the private sector because 
of its utility in enabling multi-party interactions, and as such we believe a thorough understanding 
of the opportunities it presents for biological applications is essential for IQT and the USG. 
 
Homomorphic encryption can be separated into 
two classes: fully HE and partial HE.  Fully HE 
systems allow an arbitrary set of operations (e.g., 
addition, subtraction, division, and multiplication) 
to be performed on ciphertext.  Partial HE systems 
allow a much smaller subset of operations on 
ciphertext, with each encryption system 
developed to support a specific set of operations. 
The Paillier homomorphic encryption system (PHE) 

18 is a partial, additive-only (+) HE cryptosystem. 
PHE algorithms can be orders of magnitude faster 
than fully HE cryptosystems19 and thus are 
promising for near-term operational applications. 
To date, there is no published work combining any 
version of HE applications with polynucleotide 
sequence-to-sequence comparisons, that we are 
aware of. 
 
Hardware-based approaches. There are a number of hardware-based options for data security 
at rest, including AES full disk encryption (FDE) now available as hardware options by popular 
storage device manufacturers such as Seagate®, Hitachi, Western Digital, Samsung, PureStorage 
(an IQT Portfolio company) and EMC, just to name a few. However, these options do not secure 

                                                           
14 Kim M, Lauter K. Private genome analysis through homomorphic encryption. BMC Med Inform Decis Mak. 
BioMed Central; 2015;15(5):S3.  
15 Ziegeldorf JH, Pennekamp J, Hellmanns D, Schwinger F, Kunze I, Henze M, Hiller J, Matzutt R, Wehrle K. BLOOM: 
BLoom filter based oblivious outsourced matchings. BMC Med Genomics. 2017 Jul;10(2):44. PMID: 28786361  
16 Dowlin N, Gilad-Bachrach R, Laine K, Lauter K, Naehrig M, Wernsing J. Manual for using homomorphic encryption 
for bioinformatics. Proc IEEE. IEEE; 2017;105(3):552–567.  
17 Gentry C. Fully homomorphic encryption using ideal lattices. STOC. 2009. p. 169–178.  
18 Paillier P. Public-key cryptosystems based on composite degree residuosity classes. Eurocrypt. Springer; 1999. p. 
223–238.  
19 Chen H, Laine K. Simple Encrypted Arithmetic Library - SEAL v2.2 [Internet]. 2017 Jun. Available from: 
https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-2/  

Figure 1: Homomorphic encryption – operations on 
plaintext are mirrored in cipher text space. 

https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-seal-v2-2/
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sensitive data while it resides in memory being processed.  A relatively ‘new-to-the-scene’ 
technology that could enable secure data operations is a recent addition to the Intel® instruction 
set architecture (ISA) called Software Guard eXtension (SGX).  SGX enables a secure enclave to 
be created and accessed only by trusted processes, permitting operations on sensitive data in 
situations where the system would otherwise be untrusted.  The SGX-capable executable can be 
run alone since the CPU itself provides the encrypted environment. Although performance 
degradation is not well-known at this time, computational overhead is expected to some degree 
given the complex protocols to go ‘in’ and ‘out’ of the enclave and the need to encrypt/decrypt. 
It is worth noting that SGX and HE do not need to be viewed in an “either/or” fashion; rather, 
one might choose to implement both. The addition of a partial or fully homomorphic encryption 
to SGX would add additional layers of data protection by obscuring the data itself, thus reducing 
the impact of exposure.  

 
SIG-DB protocol description 
 
SIG-DB can be broken down into four major steps: (1) sequence pre-processing, (2) query 
encryption, (3) scoring, and (4) decryption.  Steps 2 and 4 utilize whichever encryption approach 
is desired (PHE or FHE in our case).  Steps 1 and 3 remain the same regardless of the selected 
encryption approach. 
 
Sequences (query and database entries) are pre-processed prior to encryption or scoring by 
splitting into k-mers, applying a hash function, and then converting into a locality sensitive hash 
(LSH). The use of k-mers is an established method of breaking up genetic sequences without 
appreciative data loss. The size of the k-mer is a tunable parameter that can be optimized for a 
specific application. LSHs are also space efficient data structures that store information at either 
a 1 or 0 and, unlike bloom filters, force the data to a preset vector size that is smaller than the 
original data dimensions. For example, the sequence ‘ATCGGATC’ would represent a 1 in a 
separate location within the LSH than ‘GTAACAGT’ (see Figure 2). The size of the LSH is set based 
on the size of the data being stored and the pre-determined limit for hash collisions. For our 
application, the LSH length is set to be five times the length of the longest sequence of the 
sequences being scored, thus the probability of a hash collision is 18%. This probability can be 
changed based on user requirements, and lowered by increasing the size of the LSH (with an 
increase in runtime), or by using multiple hash functions in conjunction to build a bloom filter 
rather than an LSH20. Using this pre-processing approach, we can reduce data size, and by 
extension, compute time. 

                                                           
20 Bloom BH. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications of the ACM. 1970: 
13(7):422-426. http://dmod.eu/deca/ft_gateway.cfm.pdf  

http://dmod.eu/deca/ft_gateway.cfm.pdf
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Figure 2: Example of a Locality Sensitive Hash (LSH), derived from a DNA sequence. In SIG-DB, the k-mers are created using a 
sliding window of 1 character, as illustrated, with a sequence of length n resulting in ‘n-k’ k-mers.  
 
Similarity scores are calculated as Intersection over Union (IoU), Intersection over length of Query 
(IoQ), and Intersection over length of Database entry (IoD) (see Figure 3). The IoU is a common 
metric when looking at the proportion of an item correctly classified, such as in computer vision. 
This metric is efficient to compute and well established; therefore, it is the prime candidate for 
our application. IoD and IoQ were included to provide an alternative metric that would account 
for sequence length variation between the query and database sequences. Additional metrics 
could be useful, but a full characterization of metrics is beyond the scope of this project.  
 

 
 

Figure 3: Visual depiction of the similarity scores: IoU, IoQ, and IoD. The blue boxes represent the query LSH, 
and the green boxes represent the database entry LSH. The element included in the calculation is notated by 
the black box. 
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Figure 4: SIG-DB protocol for (1) hashing sequence into locality sensitive hash (LSH), (2) encrypting and passing LSH, (3) hashing 
database elements into LSHs, (4) comparing encrypted query LSH to database LSHs, (5) passing scores and decrypting, and (6) 
calculating IoU, IoD, and IoQ scores.  

 
The SIG-DB protocol (whether PHE, FHE, or SGX) is executed as follows (steps below coincide with 
steps in Figure 4): 
 

(1) The Querier converts the query sequence to a Locality Sensitive Hash (LSH) 
(2) The Query LSH is encrypted and transported to the Database Owner, along with the 

scoring executable, hash function (same one used by Querier), and instructions.  
(3) The Database Owner uses the hash function to create an LSH for each entry of the 

database. NOTE: the Database LSHs do not need to be encrypted, as Database records 
never leave the Database firewall. 

(4) The Database Owner uses the executable to compare the encrypted Query LSH to the 
Database LSHs. An encrypted intersection score is generated for each Database entry. The 
magnitude (or sum of all ‘1’s in the result sequence LSH) is also computed for each 
Database entry; this value is unencrypted in the current implementation21.  

(5) The encrypted intersection scores and unencrypted computed magnitudes are returned 
to the Querier. 

(6) The Querier decrypts the intersection scores and calculates the similarity scores (IoU, IoQ, 
and IoD) using the computed magnitudes and the following equations:  
 

                                                           
21 It is a negligible algorithm extension to implement encryption for transport of the Database entry magnitude. 
However, this would substantially increase runtime. 
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𝐼𝐼𝐼𝐼𝐼𝐼 =  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

|𝑄𝑄𝑄𝑄𝐼𝐼𝐼𝐼𝑄𝑄 𝐿𝐿𝐿𝐿𝐿𝐿| + |𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄 𝐿𝐿𝐿𝐿𝐿𝐿| − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
 

𝐼𝐼𝐼𝐼𝑄𝑄 =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼|𝑄𝑄𝑄𝑄𝐼𝐼𝐼𝐼𝑄𝑄 𝐿𝐿𝐿𝐿𝐿𝐿|             𝐼𝐼𝐼𝐼𝐷𝐷 =  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
|𝐷𝐷𝐷𝐷 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑄𝑄 𝐿𝐿𝐿𝐿𝐿𝐿| 

Results 
 
We constructed a series of tests to evaluate the build and performance of the algorithm: 

(1) Parameter assessment – how does the size of the sequence and k-mer, as well as 
sequence mutation and location/density of mutations, affect the results?  

(2) Correctness – how well does the algorithm return the correct results, based on ground 
truth data? 

(3) Practicality - what are the trade-offs between query length, database size, number of 
cores used, and time of execution? 

 

Data 
We accessed and downloaded bacterial genome sequences from the National Center for 
Biotechnology Information (NCBI) Assembly RefSeq22 database, a public repository of validated, 
reference-quality sequences deposited by researchers and scientists and confirmed by NCBI 
scientists. Our dataset contained a collection of complete genomes, chromosomes, scaffolds, and 
contig23 sequences for all available bacterial species, totaling 75,958 sequences and 244 
gigabytes of data.  A subset of sequences from this database were selected for the tests described 
below.  Queries were selected out of each respective test dataset.  

Parameter Assessment 
We conducted tuning experiments to identify the effect of k-mer size on algorithm performance, 
and tested the extent to which SIG-DB is robust to sequence mutations, using a dataset of 50 E. 
coli genomes and 50 S. aureus genomes.  The k-mer length was tested at k={8, 16, and 32}24.  
Uniformly distributed, random mutations were introduced to query sequences in silico in 5% 
increments, ranging from 0%-100%.  Using a k-mer length of 8, the SIG-DB algorithm correctly 
returned the sequence of interest as the highest IoU score for sequences with mutation rates 
from 0-45% for E. coli and 0-35% for S. aureus. The mutation rate tolerance decreases as the k-
mer size increases, as shown in Figure 6.   We found that the method correctly identified the 

                                                           
22 Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 
[Internet]. Oxford University Press; 2016 Jan 4; 44 (Database issue):D7–D19. Available from: 
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702911/ 
23 A contig is a set of overlapping DNA sequences (e.g. sequence reads) that together form a consensus sequence 
for a region of DNA. 
24 These values were selected based on the optimization results of various bioinformatics approaches found in the 
literature.  

Figure 5: Definitions of similarity scores: IoU, IoQ, and IoD 
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presence of similar sequences in the subject database to a greater level of divergence when k 
was set to 8. Therefore, we set k={8} for all subsequent work.  

 

Figure 6: Intersection over Union (IoU) scores for k-mer = {8, 16, 32} with random query sequence mutation rates from 0-100%. K-
mer = 8 showed best performance, with correct identification of sequence of interest up to mutation rates of 45%. The red circles 
indicate the largest mutation rate for each k-mer size that returned the correct result as the highest IoU value. The horizontal red 
line represents the lowest IoU value where all 3 k-mer sizes returned the correct result.  

 

In biological systems, mutations are not always uniformly distributed across a sequence25, but 
instead may be clustered to one segment of a sequence26. To test how the scores are affected by 
this later scenario, the query sequences were randomly mutated using the same methodology as 
above, but localized to the first half of the sequences. The mutations ranged from 0%-100% of 
the first half of the sequence, representing total sequence mutations of 0%-50%.  As shown in 
Figure 7, the similarity scores had a less dramatic decline when mutations are localized to a 
section of the sequence, compared to the sharp decline that occurred when the mutations are 
dispersed throughout the entire sequence.  This observation is expected, because fewer k-mers 
are affected by the mutations when they are localized to one half of the sequence.   

                                                           
25 Random distribution of point mutations across the entire sequence could be caused by natural genetic drift over 
time or intentional mutagenesis in genome editing experimentation. 
26 Portions of a genome, such as a gene, could be different between two genomes due to horizontal gene transfers, 
recombinant events, or distant evolutionary relations. These changes are also possible with intentional genome 
editing experimentation. 
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Biological sequences inherently are quite variable in size, with genomes ranging from thousands 
(viruses) to billions (plants and mammals) of basepairs, depending on the species. Therefore, it 
is likely the query sequence will not be the same size as the database entries.  To test the 
robustness of SIG-DB and the similarity metrics for queries and database entries of varying 
relative lengths, we compared performance on sequences that ranged in relative length from 1:1 
to 4:1/1:4 (Q:DB, respectively).  The sequence lengths tested varied from 5,000bp to 20,000bp, 
which represent the typical size ranges for viral genomes and bacterial genes. The k-mer size was 
held constant at k={8}, and no mutations were introduced. For all ratios tested, SIG-DB returned 
the correct sequence as the highest IoU; results shown in Figure 8.  When the database sequences 
were held constant at 20,000bp and the query sequence reduced to smaller sizes, the IoQ=1.0 
for every test.  When flipped, the IoD=1.0 for every test.  This performed as expected, because 
for IoQ (or IoD), only the length of the query (or database entry, respectively) is factored into the 
similarity score calculation. Therefore, the scoring would be a perfect match for all ratios tested.   
This demonstrates the importance of including all 3 metrics in the output, to account for 
sequence size variations.  

Figure 7: Similarity scores (IoU, IoQ, and IoD) for k-mer = {8} with random sequence mutation localized to one half of the 
sequence at rates from 0-100%. The red circle represented the largest mutation rate that correctly returned the sequence of 

interest as the highest IoU score.  

IoD 
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Correctness 
The results of these parameter tests indicate that the algorithm is functioning properly, is robust 
against mutations (exact tolerance depends on parameters selected), and can tolerate variation 
in query and database sequence lengths. Next, we wanted to test the robustness of the algorithm 
to return the correct results. In order to measure this, we conceptualized the algorithm as a 
classifier and tested the classification accuracy by setting a threshold, above which the algorithm 
can be thought of as reporting that a particular database entry was similar to the query. This 
allowed us to determine the tradeoff between True Positive Rate (TPR) and the False Positive 
Rate (FPR) - also known as the Receiver Operator Characteristic (ROC).  
 
We elected to use Average Nucleotide Identity (ANI) as ground truth.  ANI is a measure of 
pairwise bidirectional nucleotide similarity, and is commonly used in bioinformatics as an in silico 
proxy for in vitro DNA hybridization experiments (the gold standard for sequence similarity 
comparisons).  In our experiments, ANI was computed for each query-database entry pair using 
the ANIb algorithm27.  
 
The ANI algorithm returns a percent identity score for two sequences. In order to use ANI as a 
source of ‘true negatives’ and ‘true positives’ we needed to select a threshold value. It is worth 
noting that this threshold selection itself introduces another layer of sensitivity-specificity 
tradeoff, but for our purposes we chose to investigate only two specific points: 99% and 95%. 
These thresholds were chosen based on recent studies that demonstrated 95% and 99% are 

                                                           
27 Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc 
Natl Acad Sci USA 106: 19126-19131. doi:10.1073/pnas.0906412106  
 

Figure 8: Similarity scores for varying sizes of query and DB entries. (A) DB held constant at 20,000 bases while query varied 
from 5,000-20,000 bases. (B) Query held constant at 20,000 bases while DB varied from 5,000-20,000 bases. 

(A) (B) 
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scientifically accepted limits to determine species or isolate level differentiation, 
respectively28,29.  
 
A dataset was created from two E.coli genomes (K-12 MG1655 and O157:H7, taken from the 
RefSeq database). 500 non-overlapping database entries were created by sampling at random 
from the full genomes for each of three lengths: 1000, 2000, and 3000 bp. From each database 
entry, a 1000 bp query sequence was selected at random. (Queries taken from database entry of 
a given length were used in searches against the database set from which they were generated 

30,31.) In order to have sufficient coverage of the desired genetic diversity, the selected query 
sequences were duplicated twice and the duplicates randomly mutated, where each base pair in 
the two duplicates had a 5% or 10% chance (respectively) of being switched to an alternate base. 
In total, this produced 1,500 queries for each length-set of database entries: 500 wild-type, 500 
samples with 5% mutation, and 500 samples with 10% mutation. 
 

ANI percent identity and SIG-DB similarity scores were computed for each database entry-query 
pair within a given length-set. For the score comparison, the maximum of the IoU, IoQ, or IoD 
(referred to here as Similarity score) was taken to account for sequence:query length differences. 
(The ROC curves for IoU, IoQ, and IoD can be found in Appendix 1, which further illustrate the 
importance of calculating all three scores. The ANI data statistics can also be found in Appendix 
1.) For the ANI tests using 95% and 99% ANI, a binary classification was created such that 
“Relevant” sequences had an ANI ≥ 95% and ≥ 99% respectively, and “Not Relevant” sequences 
had an ANI < 95% and < 99% respectively. To generate the ROC curve, multiple classification 
thresholds were defined for the SIG-DB Similarity scores such that all sequences with Similarity ≥ 
threshold were considered “Relevant”. The thresholds were set in an increasing manner, starting 
with Similarity = 0 representing a threshold that counted all sequences as “Relevant”. Each 
subsequence threshold was then set as the next highest Similarity score in the result set. For 
example, if five sequences had Similarity scores of [0.2, 0.33, 0.33, 0.75, 0.87] then each of the 
unique scores would be set as a classification threshold, resulting in the following counts of the 
number of “Relevant” sequences at each threshold: [5, 4, 2, 1]. The following definitions were 
used to measure performance: 

                                                           
28 Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization 
values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 57: 81-91, doi: 
10.1099/ijs.0.64483-0  
29 Kim M, Oh H, Park S, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 
16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 64: 346-351, 
doi: 10.1099/ijs.0.059774-0 
30Queries were created from the database entries to ensure we would get both positive and negative hits. Given 
that each position can be one of 4 options [A, T, C, G] and we are using long sequences [500-20,000+], the 
likelihood of a sequence reaching 70% by chance is so small that we do not worry about accidental matches at this 
similarity level.  
31It is widely accepted in the scientific community that sequences with approximately 70% or less similarity are 
likely not related.  Therefore, discerning below that level is not likely of interest for biological applications.   . 

https://dx.doi.org/10.1099/ijs.0.64483-0
https://dx.doi.org/10.1099/ijs.0.059774-0
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 True Positive (TP) = the number of scores classified as “Relevant” by both the Similarity 
and ANI scores.  

 False Positive (FP) = the number of scores classified as “Relevant” by the Similarity score 
and “Not Relevant” by the ANI score. 

 
For each new threshold, the True Positive and False Positive rates were calculated, then plotted 
as the ROC curve (see Figure 9).  
 
The algorithm performed well across all database entry length sets and under both ANI 
thresholds. In fact, with an ANI threshold of 0.95 (a slightly more ‘permissive’ gold standard), the 
algorithm was essentially a perfect classifier - assigning Similarity scores to database entry-query 
pairs in exactly the same order as their ANI score rankings. 

 

Figure 9: Receiver Operator Characteristic (ROC) curves for Paillier-SIG-DB. Query length =1000 bases and ANI threshold of 0.99 for A-
C; 0.95 for D. (A) DB entry length=1000 bp with a total of 750,000 query to database entry comparisons and 1,515 of those with ANI 
scores above the ANI threshold (true positives) (B) DB entry length=2000 bp with a total of 750,000 query to database entry 
comparisons and 1,549 of those with ANI scores above the ANI threshold (C) DB entry length=3000 bp with a total of 750,000 query to 
database entry comparisons and 1,708 of those with ANI scores above the ANI threshold (D) DB entry length=1000bp with a total of 
750,000 query to database entry comparisons and 1,877 of those with ANI scores above the ANI threshold (representative of all ROC 
curves generated using an ANI threshold=0.95).  
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Practicality 
 
One major concern for using homomorphic encryption techniques for operational purposes is 
the computational expense.  To assess the practicality of using SIG-DB for biodefense 
applications, we performed a series of tests to understand: 

• The amount of time required to run the full operation on a single CPU core 
• The time savings that could be achieved using a parallelized approach 
• The breakout of time requirements by step in the protocol (encryption time, query time, 

and scoring time) 
 

All bacterial sequences in the RefSeq database were used to perform these tests.  The database 
records have a minimum length of 337 bases, a maximum length of 12,106,419 bases, and an 
average length of 2,756 bases.  Heat maps were generated from test runs that evaluate 3 
different variables: (1) number of cores used for computation (1 - 48 cores), (2) query length (100 
– 20,000 bases), and (3) number of entries in the database (100, 1000, 5000, and 10000 FASTA32 
files; or 10,145 sequences, 89,992 sequences, 425,772 sequences, and 860,984 sequences, 
respectively).   

Of Note:  

• For the practicality tests only, the SIG-DB algorithm included an additional step that 
chopped each database entry into equal-sized pieces as the query sequence.  Therefore, 
for all practicality tests, query length = database entry length. 

• SIG-DB was written in Python®, which is not optimized for computational performance.  
It is expected the execution time would improve if SIG-DB was re-developed and 
optimized in C++ or equivalent code.  

                                                           
32 FASTA is a text-based file format commonly used in bioinformatics applications. 
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Figure 10: Heat Map showing time of execution for SIG-DB, comparing a single query of 'qlen' length to a database containing 
1000 entries (82,992 sequences).  The trends in this heat map are representative of all scenarios tested. 

 
 
Observation #1: Parallelization helps performance, but has diminishing returns for more than 16 
CPU cores.  The reduction of runtime is evident by the heat maps in Figure 10 (Scoring Time is 
the exception; see Observation #3 below).  For example, with a 20,000 bp sequence length and 
a database of 82,992 sequences, the execution time goes from 51 minutes with 1 core to 21 
minutes with 16 cores - a reduction of more than 50%. However, the execution time is nearly the 
same for the test runs using 16 or more cores (Figure 11).  The dwindling improvement beyond 
16 cores likely indicates that 16 cores are sufficient infrastructure to carry out the query 
efficiently, and that the cost of splitting the query into smaller operations (across more cores) is 
greater than the performance gained – often referred to as over-parallelization. This also implies 
that as the dataset increases in size, the value of more CPUs could increase beyond 16 cores; 
however, that increasing value is not linear. 
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Figure 11: SIG-DB Execution time for a query against a database of 100 entries (10,145 sequences) using various numbers of cores 
for computation.  

 
 
Observation #2: Query Time and Scoring Time are the most time intensive steps, and they appear 
to be roughly equal, even as parameters change. This is to be expected, because an 
encrypt/decrypt operation is conducted on each element of the database.  
 
Observation #3: Scoring Time performs worse when parallelized. While the root cause of this is 
still unknown, it is likely related to the size of the query being scored and how efficient it is, or is 
not, to divide the work over several CPUs at the same time, versus running the calculation on a 
single CPU without that overhead.   
 
Observation #4: Execution Time is linearly correlated with database size, as illustrated in Figure 
12 (factor of 8 difference between the two lines; y-axis is in log scale). This helps to extrapolate 
how long a run might take based on database size. Additionally, this is an important element to 
the security aspect of the algorithm, because a non-linear runtime could reveal information to 
the DB Owner about the query and its similarity to the database entries.   
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Figure 12: SIG-DB execution time for 100 and 1000 database entries compared to different query lengths; both runs performed 
with 48 cores. Note: y-axis is in log-scale. 

 
 
Fully Homomorphic Encryption 
In the above description, we employ Paillier homomorphic encryption (PHE), which allows for the 
use of addition on encrypted cipher text. A most robust version of this encryption is fully 
homomorphic encryption (FHE), which allows for the use of a larger set of operations on the 
encrypted cipher text, such as addition, division, and multiplication. These additional operations 
come with a computational overhead, making it more challenging to scale for most operational 
uses. There are companies, including Enveil (an IQT portfolio company), currently working to 
address this challenge.  
 
Using FHE instead of PHE allows the algorithm to calculate the full IoU/IoQ/IoD scores within the 
database and return only these encrypted scores, instead of an encrypted intersection and 
plaintext LSH magnitude as done in the Paillier version of the algorithm. This reduces the 
information leaked about the database slightly by not revealing the LSH magnitudes. 
 
The actual SIG-DB algorithm remains the same between FHE and PHE. Therefore, all performance 
measures except practicality will be the same for either PHE or FHE. To understand how 
significant the additional computational overhead would be for a FHE implementation of SIG-DB 
in its current form, we conducted queries with sequences of 1,000 base pairs against databases 
of 7, 70, 700, and 7,078 entries. We found that the FHE implementation requires approximately 
2.25 times as long to execute as the PHE implementation (Figure 13). This a lower cost overhead 
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than we expected, as FHE is infamous for the time it takes to operate. This performance 
difference is most likely due to the programming language that each algorithm version is 
implemented in. The PHE SIG-DB is written in Python®, which is a high-level scripting language 
and is not optimized for complex mathematical operations without the use of additional 
packages. The FHE version of the SIG-DB algorithm employs a version of the Simple Encrypted 
Arithmetic Library (SEAL), created by Microsoft Research and written in C++. This programming 
language is much more efficient and is designed for fast and efficient operations. The FHE was 
implemented in a Python® binding version of SEAL that we developed in conjunction with Lab41, 
and subsequently released in an open-source repository named PySEAL.  
 
The comparison of the PHE to the FHE version of the algorithms tells us that, even though the 
cost overhead was lower than expected (again likely due to implementation language), it is still 
substantial when using fully homomorphic encryption. Even written in a more efficient 
programming language, the FHE algorithm takes approximately 2.25 times as long to operate, 
and further work must be done, either in-house or in conjunction with our portfolio company, to 
improve this outcome.  
 

Figure 13: SIG-DB execution time for query sequences of 1,000 base pairs in length. The x-axis demonstrates partially homomorphic 
execution and the y-axis demonstrates fully homomorphic execution. The time point comparisons are for searching a data base of 
7, 70, 700, and 7,078 sequences (ascending order of execution time).  
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Security Enhanced Third Party Approach 
Using a trusted third party to execute a genomic comparison is an approach that could be used 
today.  It involves a third party, trusted by both the Querier and the Database Owner, which 
executes any operations.  Because the third party in this scenario receives both the database and 
the query, the level of trust required by the database and query owners is significant. However, 
advances in hardware-based secure computation could facilitate that trust.  Intel® SGX offers an 
opportunity to enable a secure enclave in an otherwise unsecured operating system33,34,35; in our 
case, we envision a cloud-based system.  This cloud-based set up (which we are referring to as a 
“Security-Enhanced Third Party”) is not operationally available as of yet, although Microsoft 
Azure and IBM are actively working on this approach36,37 (commercial release date TBD).  
 
This Security-Enhanced Third Party approach would operate as follows: 

• The Security-Enhanced Third Party system would issue the Querier and the Database 
Owner unique keys with which to encrypt their respective data. 

• Both the Querier and the Database Owner would encrypt their data and upload to the 
cloud platform. 

• The SIG-DB executable would be loaded into the SGX enclave in the cloud38.  
• The SGX enclave, having issued the encryption keys, would be able to decrypt both 

parties’ data and perform a SIG-DB comparison. 
• The resulting similarities would be re-encrypted using the encryption key provided to the 

enclave by the Querier (often referred to as “bring your own key” protocol) and the 
encrypted IoU/IoQ/IoD score would be passed back to the Querier 

• The Querier would decrypt the similarity score and use the information in the manner 
best suited for the results (e.g. pursue further action or not) 

 

The major benefit of secure enclave-based algorithms is the ability to operate on plaintext while 
maintaining privacy, and only needing to perform encrypt and decrypt operations on ciphertext. 
This would significantly speed up the similarity comparison stages of the SIG-DB algorithm. An 
additional benefit for the cloud-based system is that the Database Owner is no longer responsible 
for running the executable. This could address the concerns of some database owners about 

                                                           
33 McKeen F et al, Innovative Instructions and Software Model for Isolated Execution. 2013. HASP. Accessed online 
24 Feb 2018. https://docs.google.com/file/d/0B_wHUJwViKDaV0tsLUZnSWxCVnc/edit  
34 Anati I et al, Innovative Technology for CPU Based Attestation and Sealing. 2013. HASP. Accessed online 24 Feb 
2018. https://docs.google.com/file/d/0B_wHUJwViKDaSUV6aUcxR0dPejg/edit  
35 Hoekstra M et al, Using Innovative Instructions to Create Trustworthy Software Solutions. 2013. HASP. Accessed 
online 24 Feb 2018. https://docs.google.com/file/d/0B_wHUJwViKDaNk5IWVBJeXRxc0k/edit  
36 Microsoft Azure. “Introducing Azure Confidential Computing” 14 Sept 2017. Accessed online 24 Feb 2018. 
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/  
37 Schuster F et al, VC3: Trustworthy Data Analytics in the Cloud using SGX. 2016. Accessed online 24 Feb 2018. 
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/vc3-oakland2015.pdf  
38 The current implementation of SIG-DB allows for a user to specify plaintext-to-plaintext comparisons, which is 
what would be used in this scenario.  
 

https://docs.google.com/file/d/0B_wHUJwViKDaV0tsLUZnSWxCVnc/edit
https://docs.google.com/file/d/0B_wHUJwViKDaSUV6aUcxR0dPejg/edit
https://docs.google.com/file/d/0B_wHUJwViKDaNk5IWVBJeXRxc0k/edit
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/vc3-oakland2015.pdf
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running someone else’s executable behind their firewall. However, this system comes with 
limitations. The primary limitation of the secure enclave is that all processed data and software 
must be within the enclave. This requires the query and the data to be co-located on the same 
system at one point or another. If the query and the data are not already co-located, then this 
would require additional data transport time.  Although the level of trust would likely be much 
lower than that of a traditional trusted third party, there still remains an element of trust that is 
needed, because the users must trust Intel® (the manufacturer of the SGX chip).  Intel® has tried 
to address this by creating a key generation process that removes Intel® from knowing the actual 
key being used39. Moreover, the data and operation is protected from the host of the cloud by 
the data being encrypted when not in the secure enclave, and there is no need for the host to 
have access to any keys involved.  

The complexity of the overall SGX system will likely cause performance degradation compared to 
plaintext operations on an open system – the expected amount is undetermined at this time 
given the limited amount of performance testing to date. One study40 conducted by IBM 
Research found code running inside the enclave was able to reach high throughput for certain 
input sizes, on par with code running outside the enclave.  However, they also found the entire 
SGX system to be very complex to performance tune with many slow-down points, including the 
context switching required to enter or exit the enclave. The number of steps contributing to the 
performance degradation depends on the actual set-up used with the enclave.  

We originally set out to develop an SGX/SIG-DB approach using a local SGX-enabled CPU. We 
secured a laptop with the Intel® SGX chip and an SGX-supported motherboard.  Using a Docker® 
image with Intel® SGX support41 and the graphene library42 (a library OS for Linux multi-process 
applications with SGX support that enables Python® code to operate within the enclave), we 
started developing the SGX-based algorithm. However, as noted below, we ran into four 
significant issues that ultimately halted our efforts.  

First, developing with SGX code is complicated and requires a unique set of coding skills thatare 
not as common as Python®-based bioinformatics skills. We had SGX expertise in house, but only 
for the first part of the year, which supported our initial exploration efforts. As the SGX software 
ecosystem matures, the level of hardware and programming expertise may be reduced.   

Second, the SGX environment is still immature. This is expected given that SGX was first 
announced in 2013, and it takes time to fully test and prove out any new hardware.  We found 
the code to be buggy and its documentation minimal.  . Recently, a new version of the graphene 

                                                           
39 Aumasson JP and Merino L. SGX Secure Enclaves in Practice: Security and Crypto Review. 2016. Blackhat. 
Accessed online 14 Feb 2018. https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-
Enclaves-In-Practice-Security-And-Crypto-Review.pdf  
40 Harnik D and Tsfadia E. “Impressions of Intel® SGX performance.” 27 Dec 2017.  Accessed online 24 Feb 2018. 
https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a   
41 https://github.com/tozd/docker-sgx  
42 https://github.com/oscarlab/graphene  

https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a
https://github.com/tozd/docker-sgx
https://github.com/oscarlab/graphene
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library was released that fixes many of the bugs we encountered, which would be used if we 
were to continue this development.   

Third, a laptop is insufficient for the application we are pursuing.  Most applications that are using 
SGX currently store data or keep ledgers (such as digital rights management, which spurred the 
development of SGX).  However, our application requires the data to be operated on, which 
means the algorithm has to be stored and executed all within the secure enclave.  The memory 
within that enclave on a laptop is too small to perform the level of operation we need, which is 
why we belive that, ultimately, only a cloud-based enclave system will have sufficient 
computational capacity.  

Lastly, at mid-project, a significant security flaw was announced for the Intel® Management 
Engine that compromised the security of nearly all Intel® systems.  Although Intel® was able to 
provide a quick fix through a firmware update, it is still undetermined if and how this affects the 
SGX system. Due to the challenges with development and unknowns around the newly revealed 
inherent security flaws in the system, we did not complete a full-scope algorithm implementation 
of a Security Enhanced Third Party Approach.  

However, we still see promise in the technology, particularly for a cloud-based system.  The SGX 
technology is also on the radar of IQT technical staff, who will track its progress for possible future 
investments. IQT Labs is negotiating access to the Microsoft Azure system.  If we succeed, we 
intend to continue the development and testing of this Security-Enhanced Third Party Approach 
using the Microsoft Azure system when the SGX capability is implemented.  

 
SIG-DB Security Assessment 
The overall security of an encrypted data manipulation algorithm is fundamental to its success. 
Of the three security schemes we examined in this study, the quantity and type of information 
leakage decreases from PHE, to FHE, to SGX.  The SIG-DB algorithm leverages established 
homomorphic encryption schemes to ensure that no outside (non-participating) party can learn 
the details of specific queries; only information about the query request patterns can be learned. 
It also ensures that no outside party can view the database records directly. Only metadata is 
exchanged in the form of encrypted LSH magnitudes, and thus individual data entries are never 
exposed outside the owners’ own security systems. It is possible, however, for an outside party 
to infer the length of a database record sequence relative to other records through the database 
record LSH magnitude that is returned to the Querier. This information itself has low value, 
however, due to the possible diversity of types of sequences within a database and the inherent 
variability in sequence size amongst species.   

From the metadata returned for both homomorphic encryption schemes tested, the Querier will 
learn the number of entries in the database. When combined with the computed magnitudes 
returned for the PHE approach and the similarity scores, the Querier could extrapolate the 
diversity within the database. Additionally, if the Querier repeated SIG-DB multiple times against 
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the same database using the same query sequence, the Querier could learn about any database 
modifications that may have occurred.  This risk is limited, however, since the execution is 
controlled by the Database Owner, who retains the right to refuse repeat executions.  

An FHE approach, such as Microsoft SEAL, reduces the amount of information leaked by not 
needing to reveal the magnitudes of Database LSHs (unlike PHE), and therefore does not reveal 
the length of the database entries.  This is because FHE allows for division and multiplication, 
allowing the algorithm to calculate the full similarity score (while keeping it encrypted) before 
passing the information out of the database. However, FHE comes with an increased 
computational cost, as described above. 

The SGX approach is theoretically the most secure of these three security schemes with the least 
amount of information leaked.  This reduced information leakage is because the Database Owner 
is no longer receiving the query sequence and running the executable. The Querier could still 
learn some information about the database if a similarity score is returned for every database 
entry.  However, a max function (which currently is not operationally feasible to implement 
within the SEAL FHE library) could be included in the operation so only the top N scores are 
returned; meaning very little (if any) information about the database could be extrapolated. For 
overall system security, the SGX system architecture is intended to lock down all information 
within the enclave.  This means no component on the outside can penetrate the enclave, 
including kernels, hypervisors, SMM, BIOS, firmware, drivers, Intel® Management Engine, or any 
other part of the unsecured computing system. While theoretically secure, there still remain 
many questions about the actual operational security of the SGX system43,44, including providing 
input to and output from the secure enclave without creating breaks in the security, 
vulnerabilities to attacks (e.g. side-channel attacks), exploitable bugs, and possible information 
leakages.  These system securities will need to be addressed before SGX is widely accepted in the 
community. Researchers are working on answering these questions45 and Intel® has provided 
open source libraries for developers to implement SGX and provide feedback on vulnerabilities 
of the code46.  We  remain fairly optimistic about the future of SGX and the capabilities it could 
be bring to bear once the technology has been sufficiently tested and optimized. 

  

                                                           
43 Joanna Rutkowska. Thoughts on Intel’s Upcoming Software Guard Extension, Part 1. The Invisible Things Lab’s 
blog. 30 Aug 2013. Accessed online 24 Feb 2018. http://theinvisiblethings.blogspot.com/2013/08/thoughts-on-
intels-upcoming-software.html  
44 Joanna Rutkowska. Thoughts on Intel’s Upcoming Software Guard Extension, Part 2. The Invisible Things Lab’s 
blog. 23 Sept 2013. Accessed online 24 Feb 2018.  http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-
intels-upcoming-software.html  
45 Georgia Tech, School of Computer Science. College of Computing. “SGX Projects”. Accessed 24 Feb 2018.  
https://sslab.gtisc.gatech.edu/pages/sgx.html  
46 Intel SGX for Linus. https://github.com/intel/linux-sgx  
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Conclusions and Next Steps 
 
Through this cross-lab collaboration, we have demonstrated a suitable, technologically feasible 
approach to compare a genomic sequence of interest to a privately-held database, and produce 
an indication of similarity between the sequence of interest and each database entry. This 
algorithm simultaneously protects the security concerns of the Querier and the privacy concerns 
of the Database Owner. SIG-DB leverages established information security techniques, but does 
so in a way that is usable by non-experts.  This approach could enable bioinformatics practitioners 
or investigators to leverage privately-held information in a secure way – a capability that is non-
existent today for genomic sequence comparisons.  This tool could expedite the timeliness of 
queries and gain meaningful results in critical timeframes for response decisions. This is 
important, as many bioinformatics practitioners are not security experts, and thus are less likely 
to develop applications in this space. 

There are a variety of approaches one could take to enable secure computations, and they will 
each have their own strengths and weaknesses.  Of the approaches we explored in this study, 
the SGX-enabled Security Enhanced Third Party approach offers the least information leakage 
(theoretically) and a minimal increased burden of time for the execution of the similarity 
comparison compared to plaintext, unsecure protocols (although, a full statement of comparison 
is not possible at this time since overall expected performance degradation is unknown).  
However, much research is still needed to fully measure and understand just how secure this 
system really is.  The Paillier HE implementation of SIG-DB creates the greatest amount of 
information leakage of the explored approaches. However, this still remains low and is likely 
tolerable given the benefits such a system provides. While the Paillier HE implementation does 
add substantial computational time compared to plaintext operations, it is not as costly as the 
fully HE implementation, and is the most likely short-term solution for this application.  The 
ultimate choice of which implementation to use comes down to the users’ trade-off between 
tolerable execution time and information leakage.   

B.Next hosted a roundtable event on February 6, 2018 to present and discuss SIG-DB with 
biodefense experts, bioinformatics practitioners, and analysts who are responsible for 
interrogating biological samples.    The participants confirmed that data sharing is still a huge 
problem for national security purposes and will only continue to grow. There was unanimous 
interest in the SIG-DB approach, with recognition that the approach (and alternative approaches) 
should continue to be tested and optimized.  A number of participants articulated how the ability 
to access private genome databases with such a tool would greatly enhance their ability to 
analyze new samples.  In addition, they identified new use cases, including the searching of 
compartmented data within agencies, data searches between participants in commercial joint 
ventures, and leveraging protected genomic data for population studies in medical research.  
Attendees recommended a number of technical avenues for further investigation, including 
examining effect of k-mer size on performance and possible ways to incorporate the order of k-
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mers into the analysis, exploring the use of Bloom filters, crafting a metric for data leakage, and 
exploring ways to speed up the execution time.   

To decrease execution time and improve performance, possible approaches include: 

- Characterizing additional scoring metrics to determine the optimal approach. 
- Implementing the SIG-DB algorithm in C++ (which runs faster than code in Python®), and 

completing a pilot study with partners using such a C++ version to further evaluate 
practicality and real-world scenarios.  

- Evaluating and optimizing the protocol for bacterial, plant, and animal genome 
sequences. (We limited the sequence lengths to 20,000 bases to enable faster runtimes 
during testing.) 

- Exploring other secure computation techniques to identify the optimal approach based 
on performance and execution time. 

- Evaluating the build and performance of SIG-DB with a Security Enhanced Third Party. 
 

We developed this tool with the initial intention of it being used for microbial genomic sequence 
comparisons, especially when a user needs to quickly identify a source of information relevant to 
the query sequence, such as after the intentional release of a BW agent.   However, there are a 
number of applications that it could be used for including human genomics, healthcare, 
organizational collaborations, and more.  SIG-DB can be optimized for a particular application by 
modified the parameters (k-mer size, LSH size, hash collision rate) based on the tolerances of 
mutations, size of database, and computational resources.  The potential versatility of this 
protocol creates an even greater opportunity for impact within the broader scientific community.  
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Appendix 1: Supplementary Materials 
 

Figure 13: Receiver Operator Characteristic (ROC) curves for Paillier-SIG-DB based on each similarity score – (A) IoD, (B) IoU, and 
(C) IoQ. Query length =1000 bases and ANI threshold of 0.99. The DB entry length was 1000 bp (top row) with a total of 750,000 
query to database entry comparisons and  1,515 of those with ANI scores above the ANI threshold (true positives) and 3000 bp 
(bottom row) with DB entry length=3000 bp with a total of 750,000 query to database entry comparisons and 1,708 of those with 
ANI scores above the ANI threshold. 

As shown in Figure 13, using IoD as the similarity score when a query is one-third the size of the 
database entires results in an odd ROC curve representing very poor performance.  One possible 
explanation is that the denominator is larger than the possible intersection space, and as such, 
we may be washing out the small differences between the intersections of positive and negative 
examples. In a dataset of only 0.2% positive samples, this leads to broad misclassification.  This 
phenomenon is exactly why we included IoD, IoU, and IoQ as our scoring metrics.  Operationally, 
the max similarity score should be used, as demonstrated by the near-perfect performance 
obtained in Figure 9.  
 
Table 1. ANI Data statistics describing the distribution of the ANI scores for each database element length 
dataset. 

 

Database element Length Min First Quartile Mean Third Quartile Max STD 

1000 0.00 0.34 0.41 0.53 1.00 0.09 

2000 0.00 0.36 0.42 0.51 1.00 0.12 

3000 
 

0.00 0.29 0.46 0.59 1.00 0.19 

A B C 
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