
 

© 2018 In-Q-Tel, Inc.  1 

 
 
  
 
 
 
 
 
 
 
 
 

GEMstone 2.0:  Detecting Evidence of  
Genetic Engineering  

 
FY18 Project Report 

Feb 26, 2018 
 
 
 
 
 
 
 
 
 
 

      
 
 
 
 

 
An In-Q-Tel Labs Collaboration  

 
 
 
  



 

© 2018 In-Q-Tel, Inc.  2 

Table of Contents 
Executive Summary ....................................................................................................................................... 3 

Background ................................................................................................................................................... 4 

Methods: Data Sources ................................................................................................................................. 8 

Methods: Model Architecture .................................................................................................................... 13 

Methods: Training and Testing ................................................................................................................... 17 

Results ......................................................................................................................................................... 19 

Discussion.................................................................................................................................................... 25 

References .................................................................................................................................................. 30 

Appendices .................................................................................................................................................. 32 

Appendix A: Exploratory Data Analysis and Initial Experiments ............................................................. 32 

Appendix B: Model Architecture and Training Details............................................................................ 35 

 



 

© 2018 In-Q-Tel, Inc.  3 

Executive Summary 
 
The desire and ability to genetically engineer organisms is becoming increasingly widespread, 
and the barriers to using the most sophisticated means of genome editing are falling 
rapidly.  There is a corresponding risk that actors with malicious intent may decide to use these 
tools to create more dangerous strains of pathogenic organisms.  The sophistication of the design 
tools to make such organisms currently far outstrips the capabilities of the tools with which 
genetic engineering can be detected quickly and accurately in an automated fashion. 
 
In consultation with B.Next’s biodefense community partners, IQT Labs B.Next and Lab41 have 
explored how applying machine learning (ML) approaches to DNA sequence analysis may provide 
“triage” tools that enable users to quickly assess the likelihood that the genome of a suspect 
organism has been engineered.  The Labs obtained a diverse dataset from both public (US and 
European) and private (a synthetic biology company) sources that was used to train, validate and 
test several ML models to detect the insertion of DNA from one organism or source into 
another.  The performance of the trained models varied with the complexity of the underlying 
dataset, but was sufficient to illustrate the promise of ML-based approaches to rapid DNA 
sequence analysis for biodefense applications.  Our findings also suggested immediate changes 
to model training that would likely improve performance. 
 
The results of this project were recently briefed to the same members of the US biodefense 
community who helped frame the problem.  The participants were uniformly optimistic about 
the potential for ML-based approaches, and recommended that future work include refinements 
in the data sources used and establishing confidence metrics for trained models. 
 
Highlights: 

• B.Next and colleagues in biodefense identified that the lack of analytical tools for 
detecting genetic engineering is a significant issue to enabling an effective response to a 
biothreat. (see Background, p. 4) 

• ML has been applied to DNA analysis, but not extensively. (see Background, p. 6) 
• The ML models developed by the IQT Labs team detect cloning boundaries - junctions 

between inserted DNA and the genome of the “destination” organism.  (see Methods: 
Data Sources, p. 8) 

• The team created an in silico method to generate an unlimited source of synthetic cloning 
boundaries for use in model training and validation. (see Methods: Data Sources, p. 11) 

• The ML models we generated demonstrated classification accuracies between 93% and 
74%, which correlated inversely with the complexity of the datasets used in training, 
validation and testing.  (see Results, p. 19) 

• Our work complements but does not duplicate other efforts across the USG and within 
IQT.  B.Next-hosted discussions were the origin of IARPA’s FELIX program, which will 
generate larger-scale tools for detecting genetic engineering.  B.Next staff were members 
of the source selection board for FELIX proposals. (see Discussion, p. 27) 



 

© 2018 In-Q-Tel, Inc.  4 

Background 
 
Community input on key issues.  In September 2016, B.Next convened a roundtable discussion 
to explore whether and how a biological sample containing microorganisms could be examined 
quickly using available techniques and procedures to determine whether a pathogenic 
microorganism had been subject to genetic manipulation, and if so, whether the intended and 
actual functionality of the genetic manipulation could be understood.     
  
The roundtable (called GEMstone, for Genetically Engineered Microorganisms) was attended by 
26 participants, including scientists from academia, seven US Government agencies and the 
Lawrence Livermore National Lab, representatives from private sector companies engaged in 
DNA sequencing and bioinformatics, and IQT professional staff.  The group’s expertise included 
bioinformatics, genetic engineering, computer science, microbiology, and biotechnology. The 
discussion took place over a single day, included invited presentations from three participants, 
and was held on a not-for-attribution basis.  The GEMstone discussion and report (In-Q-Tel, Inc. 
2017) highlighted many concerns shared widely across the biological defense community, two of 
which formed the basis of two challenge projects for B.Next during FY18.   
 

• Lack of access to privately held genomic data.  An increasing proportion of DNA sequence 
data is being generated and held privately.  Private entities may not wish to make their 
data publicly accessible due to concerns about privacy, trade secrets, or liability.  
However, the analysis of a new pathogen’s DNA sequence relies substantially on the 
ability to compare it to already-known sequences.  B.Next, in collaboration with the other 
three IQT Labs, is exploring the feasibility of performing encrypted queries on proprietary 
DNA sequence databases.  Their findings are the subject of a separate B.Next challenge 
report for FY18.   

 
• Lack of robust bioinformatics tools to analyze newly acquired genomic sequences.  

While algorithms for genome sequence analysis are plentiful, few are “industrial grade”; 
they have flaws that result from having been purpose built by scientists for use cases that 
are typically limited to research.  The rapid pace of accumulation of raw sequence data 
means that tools written only a few years ago are generally unable to handle the 
increasingly large amount of available data, have inefficient data structures, are unable 
to scale performance to take full advantage of available memory or other computational 
advances, and have runtimes that exponentially increase compared to input data size.  In 
addition, many bioinformatics programs are written by individual researchers who 
publish their algorithms; however, the software that implements them is typically not 
maintained long after the research studies are published.   

  
The poor state of our tools specifically for detecting genetic engineering is also due to the lack of 
a market for them.  No such purpose-built tools exist in academia or in commerce because the 
task of making them robust and keeping them current is not relevant to academic pursuits, and 
detecting evidence of genetic engineering is largely irrelevant for commercial applications.  



 

© 2018 In-Q-Tel, Inc.  5 

Commercial synthetic biology software focuses rather on identifying and optimizing methods to 
engineer new microorganisms to make useful products.     
 
In the event of a release of a genetically engineered threat today, bioinformatics scientists, using 
sequentially a number of tools that each search for a feature or set of features, may be able to 
detect genetically engineered microorganisms given substantial time (weeks), if the 
microorganism was engineered with “traditional” engineering techniques (such as molecular 
cloning using restriction enzymes).  The users of these existing tools also rely on their 
understanding of the “rules” of genetic engineering and the underlying biology of the organisms 
under study.  A report from Lawrence Livermore National Laboratory details one (uncompleted) 
example of this approach (Allen and Slezak 2010).  More advanced genome engineering tools, 
such as CRISPR-Cas9, leave even fewer sequence-specific features as “sequence scars” in the 
engineered product sequence.   
 
Features of a useful “genetic engineering detector”.  Given the diversity of features in genetically 
engineered organisms, and the variety of methods for making them, it is unlikely that a single 
tool will serve to detect all genetic modifications in any subject organism.  A useful genetic 
engineering screening pipeline would take as input data DNA, RNA, or amino acid sequences of 
any length, with no additional information about the source, and return a description of the 
sequence, the genome of origin, and a confidence estimate that any given subsample of the 
sequence was added synthetically.   
 
There are many powerful and well-studied tools in the field of bioinformatics for comparing and 
classifying DNA sequences. These tools are usually designed with a specific biological question in 
mind – how similar are these two sequences, or how likely is it that they came from the same 
species? Such tools could be extremely useful for investigating whether a DNA sequence has been 
engineered – however they require human expertise to use and interpret, which presents a 
problem of scalability.  
 
Perhaps more importantly, classical bioinformatics tools focus on certain features of the input 
data, and often make critical assumptions about that data. For example, the Basic Local 
Alignment Search Tool (BLAST; Altschul et al. 1990) compares an input sequence with a database 
of sequences. If the input sequence is not in the database, BLAST will not return a result.  This is 
desirable behavior for a DNA alignment search tool, but it highlights a fundamental brittleness in 
traditional ‘rules-based’ sequence analysis tools. If a tool depends on existing knowledge, or 
requires a high degree of certainty about the distribution of input data, it is unlikely to generalize 
to new examples. This is particularly true in an adversarial setting in which the designer of an 
engineered pathogen may wish to hide the fact of engineering and avoid attribution.  For these 
reasons, we decided to investigate the utility of machine learning models to identify sequences 
that have been genetically engineered.   
 
 
 
 



 

© 2018 In-Q-Tel, Inc.  6 

Machine learning (ML):  a brief introduction. Machine learning is an approach to building 
predictive models for some phenomenon given a relevant dataset. Classically, in bioinformatics 
(and science generally), a phenomenon is closely studied and an attempt is made to describe the 
underlying principal at work. This hypothesis is then tested and refined through iterative 
experimentation.  
 
The process of applying machine learning to a problem is fundamentally different. Modern 
machine learning techniques to not attempt to deduce the implicit structure of whatever is being 
investigated.  Instead, a model is exposed to large quantities of training data and driven to shape 
its own parameters to best predict some output of interest. This trained model can then be used 
to make predictions about new examples. A set of predictive models built in this way has the 
capacity to recognize subtle patterns, which might elude experienced human observers. Indeed, 
these methods have surpassed human performance in many fields.  
 
Machine learning can supplement the traditional research tasks of careful observation and 
experimentation with the caveat that collecting enough representative data to train and validate 
a model that represents the phenomenon being investigated remains a challenge.  Many 
scientists working in quantitative fields apply both in parallel. The process of model selection, 
training, and refinement, is itself a form of iterative experimentation.  
 
Neural networks are a particular kind of machine learning model consisting of an interconnected 
network of nodes (neurons), typically arranged in a series of layers which perform alternating 
linear and non-linear transformations on a vector of numerical inputs. Each node is connected to 
subsequent nodes by a set of weight values. These weights can be shaped through training in 
order to produce some desired output (a label for example) for a given input. Neural networks 
are capable of representing complex highly non-linear categories of knowledge (e.g. the 
difference between pictures of a cat or a dog) which is why we chose to use them for this work.   
 
Machine learning models for DNA sequence analysis. Machine learning is a potentially powerful 
approach to recognizing patterns in DNA sequences that indicate past genetic engineering, and 
may facilitate the automated triaging of unknown biological samples. Machine learning has been 
applied to DNA sequence data, most significantly in the prediction and identification of genetic 
control elements such as promoter, enhancer and terminator sequences (Libbrecht and Noble 
2015).  In these studies, however, workers trained models with past examples of genetic control 
elements that had been identified and defined by traditional “wet-lab” experimental means.  
Others have noted the potential for ML to accelerate the synthetic biology design-build-test cycle 
(Adler and Yaman 2016).    
 
To the best of our knowledge, the direct application of ML techniques to the challenge of 
identifying genetically engineered sequences has only been minimally explored (C. Voigt, 
personal communication; Kunjapur et al. 2017). In this report, we describe a supervised method 
for training ML models to discern the presence of “cloning boundaries”, which we define as 
transitions between the inserted DNA sequence and the destination DNA into which it was 
cloned. We train and evaluate models using naturally-occurring (non-engineered) and 



 

© 2018 In-Q-Tel, Inc.  7 

engineered DNA sequences, obtained from both public and private data repositories.  We chose 
to train models on DNA sequences independent of defined sequence patterns; rather, we 
hypothesized that it would be possible to train a model to detect the insertion of DNA from one 
organism into another’s genome, without prior definition of “rules” (i.e., specific DNA sequences 
or sequence motifs),  by focusing on the presence of the “cloning boundary” feature. An appendix 
contains a description of additional data exploration and unsupervised machine learning 
approaches that were performed during earlier stages of the project.     



 

© 2018 In-Q-Tel, Inc.  8 

Methods: Data Sources 
 
Introduction.  Broadly applied, the term “genetic engineering” refers to any direct modification 
of DNA sequences by any means.  Frequently, these modifications include the insertion of one or 
more genes (which we will term “inserts” in this paper) into another piece of DNA (which we 
term “backbones”).  Examples include the insertion of human insulin gene into the genome of 
the bacterium Escherichia coli (Johnson 1983), and the insertion of a bacterial gene for resistance 
to the herbicide glyphosate (found in Roundup™, made by Monsanto®) into crop plants to assist 
in weed control (Funke et al. 2006).  Our goal was to train ML models to recognize juxtapositions 
between backbone and insert sequences, or cloning boundaries.   
 
Our ML model is trained entirely on insert-free backbone sequences, for the purpose of 
classifying whether a query sequence contains a cloning boundary or not. We deliberately chose 
not to train our model on a specific kind of insert in order to avoid building a classifier that would 
fail to generalize to other possible inserts. Instead, we chose to build a generalized cloning 
boundary detector – when trained on non-engineered sequences of a certain kind, the desired 
model would be able to detect insertions in those sequences.  
 
To validate the performance of the models during training, we created a set of virtual synthetic 
sequences (VSS; both with and without cloning boundaries) using backbone and insert sequences 
taken from several sources. These VSS, generated in-silico following a simple set of rules, allowed 
us to make and monitor improvements to our model without exposing our limited collection of 
real world experimentally modified test sequences. This sort of compartmentalization is a 
commonly accepted practice in machine learning (Figure 1).  We describe these data sources in 
detail below.  The model training, validation, and testing schemes are described in the following 
sections. 
 
Backbone Data Sources.  The backbones used here include plant and bacterial genome 
sequences, as well as plasmids (independent “microgenomes” that accompany many bacterial 
genomes both in nature and in the laboratory).  Plasmids are included as backbones because 
genetic engineers often insert DNA that encodes a useful function into plasmids as part of the 
process of making genetically engineered organisms, and in some cases, the engineered plasmids 
are themselves the end state of the genetic engineering activity.  



 

© 2018 In-Q-Tel, Inc.  9 

Table 1.  Sources for backbone DNA sequence data used for model training. 

 
Backbone sequence data (Table 1) were obtained from several databases of the GenBank 
repository of sequence data, maintained by the National Center for Biotechnology Information 
(NCBI), National Institutes of Health (NIH).  Non-engineered bacterial and plant genomic DNA 
sequences were sampled from the RefSeq database of curated reference DNA sequences.  
Plasmid DNA sequences were sampled from two GenBank databases: 1) UniVec, a reference 
collection of plasmids that have been used in genetic engineering experiments reported in the 
scientific literature, and 2) GenBank Plasmids, a dataset that does not overlap with UniVec and 
contains both engineered and naturally occurring plasmid DNA sequences. 
 
From the backbone datasets, 60 percent of the data was allotted for model training, 20 percent 
was allotted for the construction of VSS for model validation during training, and 20 percent was 
reserved for evaluation of the performance of the trained models, as illustrated in Figure 1.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Data Compartmentalization Scheme.  Three categories of data sources: backbones, inserts, and experimental synthetic 
sequences, used in three phases of ML model development: training, validation, and testing. For validation and testing, virtual 
synthetic sequences were created by combining backbones and inserts. 
 
Insert Data Sources.  Sample insert DNA sequences (Table 2) were obtained from three sources.  
BacMet (Pal et al. 2014) is a curated database of confirmed and predicted genes used by bacteria 
to resist being killed by antibacterial agents (such as antibiotics and heavy metals).  Herbicide 
resistance genes were obtained from a repository maintained by the International Survey of 

Backbone Data Set Description Samples Bases (Millions) 

UniVec NCBI collection of plasmid vector sequences 4,386 1.6 

GenBank Plasmids Additional plasmid sequences found on 
GenBank not in UniVec 564 0.2 

RefSeq Bacteria NCBI reference sequences for bacteria, only a 
subset was used for training 70,000 840 

RefSeq Plants NCBI reference sequences for plants, only a 
subset was used for training 50,000 1,105 



 

© 2018 In-Q-Tel, Inc.  10 

Herbicide Resistant Weeds (Heap 2018).  Lastly, a collection of various DNA sequences was 
sampled from the genes of eukaryotes (higher organisms including mouse, human, worm, and 
fruit fly) found in the NCBI RefSeq database mentioned above. 
 
These eukaryotic genes were included in the synthetic insert data collection in order to increase 
the heterogeneity of insert DNA, and potentially improve the generalizability of the final 
classifier. The set of model organisms: human (Lamesch et al. 2007), worm (Martin et al. 2015), 
mouse (Blake et al. 2017), and fruit fly (Gramates et al. 2017), were chosen because they had 
well-characterized whole gene sequences.  Genes from these organisms were filtered to only 
include those with lengths below 3000 bases, and then a subset were chosen randomly -- 500 
genes each from mouse and human, 250 genes each from fly and worm.  
 
All classes of inserts were used for the construction of VSS along with backbones set aside for 
this purpose (see above). From the insert datasets, 50 percent was allotted for model validation 
during training, and 50 percent was reserved for testing the performance of the trained models.   
 
 
Table 2.  Sources for insert DNA sequences used for model training.   

Insert Data Set Description Samples Bases (Millions) 

BacMet A repository of predicted and experimentally 
verified antibiotic and metal resistance genes 155,512 18 

Herbicide Resistance A small collection of known herbicide 
resistance genes 257 0.076 

RefSeq ORFs 
Randomly selected open reading frames 

(genes) from model organisms: nematode 
(worm), mouse, fly, and human 

1,500 2.9 

 
 
Experimental Synthetic Sequences.  After models were trained on sequence data prepared in 
the manner described above, all models were evaluated for their ability to correctly identify the 
presence of cloning boundaries.  Experimentally modified sequences (Table 3) were obtained 
from both public and private sources.   
 
A synthetic biology company provided to IQT Labs a dataset of over 7200 synthetic DNA 
sequences containing both backbone (plasmid) and insert gene sequences. Addgene (Herscovitch 
et al. 2012), a non-profit organization, offers a repository for plasmid DNA to which synthetic 
biologists can submit both publicly available sequence data and the corresponding physical DNA 
samples.  Addgene stores, curates, and fulfills orders from requesting labs, saving effort on the 
part of depositors.  The Modified Bacteria and Modified Plants datasets were hand-selected from 
the ENSEMBL sequence database maintained by the European Molecular Biology Laboratory 
(EMBL), and are genomic sequences of plants and bacteria that contain actual insertions of non-
native genes (and therefore, by definition, contain cloning boundaries).   
 



 

© 2018 In-Q-Tel, Inc.  11 

 
Table 3.  Sources of additional DNA sequence data used to test trained ML models.   

Test Data Set Description Samples Bases (Millions) 

A Synthetic Biology 
Company 

Commercial DNA foundry; custom plasmids 
modified with unknown inserts 7,242 54 

Addgene 
Popular collection of experimental results – 

mostly common commercial plasmids with well 
characterized insertions 

40,596 221 

Modified Bacteria Hand collected and curated set of literature 
reported modified bacterial sequences 143 0.6 

Modified Plants Hand collected and curated set of literature 
reported modified plant sequences 106 0.3 

 
Virtual Synthetic Sequence (VSS) Construction: For model validation during training, and final 
model testing (these processes are described in detail below) we created a set of VSS to 
supplement the limited collection of experimentally modified sequences. 
 
We developed a pipeline that creates sequences containing one or two cloning boundaries within 
a length of 500 bases (each base is a “letter” in the DNA code: A, G ,C or T).  We selected the 
length of 500 bases to coincide with the longest sequence reads available from current next-
generation sequencing systems, such as those made by industry leader Illumina.   
 
To generate virtual synthetic cloning boundaries between inserts and bacterial or plant genomic 
backbone sequences, our pipeline randomly selected a bacterial or plant backbone sequence 
from RefSeq Bacteria or RefSeq Plants (Table 1).  A random 500-base subsequence was extracted 
from the backbone sample.  The pipeline then selected a random insert sample from Table 2 and 
performed one of the following operations.   
 

• Select the right-most 200-400 bases (size between 200 and 400 bases selected at random) 
of the insert and attach them to the right side of the backbone sequence, then crop the 
backbone sequence to give a total combined length of 500 bases.  These sequences 
(Figure 2, example A) contain a synthetic cloning boundary that simulates the “left most 
edge” of a genetically engineered insertion. 

• Same as above, but attach insert DNA to the left side of backbone DNA.  These sequences 
(Figure 2, example B) each contain a synthetic cloning boundary that simulates the “right 
most edge” of a genetically engineered insertion.   

• Select a random subsequence of 200-400 bases from an insert sample and place within 
the backbone sequence, then crop the backbone sequence on both sides to a total 
sequence length of 500 bases (Figure 2, example C).  These sequences contain two 
synthetic cloning boundaries.  

• Select only a 500 base subsequence from within the insert sample (Figure 2, example D).  
These sequences represent DNA internal to an insert, at an indeterminate distance from 



 

© 2018 In-Q-Tel, Inc.  12 

either (presumed) synthetic cloning boundary.  These sequences do not contain a cloning 
boundary, although they are of different origin from the backbone sequence.  

 
 

 
 
Figure 2.  Virtual synthetic sequence construction:  Scheme for creating synthetic cloning boundaries in silico.  Backbone (grey) 
and insert (green) sample sequences were selected at random from their respective datasets and trimmed to 500 bases in length, 
then processed as described in the text.  Red arrows indicate synthetic cloning boundaries.    The positions of cloning boundaries 
illustrated are representative; as described in the text, they may occur at many locations in any given version of A, B, or C-type 
sequences. 
 
To generate virtual synthetic cloning boundaries between inserts and backbones sampled from 
UniVec or NCBI Plasmids (Table 1), we made insertions based on cloning practices that rely on 
restriction enzymes.  Restriction enzymes cut DNA at specific short (typically six base-long) 
sequences; two pieces of DNA that are cut with the same enzyme will have complementary 
“sticky ends” that allow them to be attached with another enzyme called ligase.  A list of available 
restriction enzyme cut sites is available for most plasmids.  If cut sites were available, an insert 
DNA sequence was sampled randomly from the datasets in Table 2, then “cut” virtually and 
“ligated” into the available restriction sequence in a backbone plasmid.   
 
  



 

© 2018 In-Q-Tel, Inc.  13 

Methods: Model Architecture 
 
The cloning boundary detector that we have developed is a pipeline consisting of a series of steps, 
described below.  The pipeline takes as input DNA sequences that are 500 bases long.  As 
discussed above, this length was chosen as representative of read-lengths commonly available 
from current sequencer technology.  
 
K-merization: An input sequence is converted into an ordered set of k-mers. This process, known 
as k-merization, is a common featurization approach in bioinformatics. It entails breaking a 
sequence into a set of subsequences, each of length k bases. A stride-length must also be set, 
which dictates how far along to slide the k-window before collecting each subsequence (Figure 
3). Our pipeline sets k = 8 and the stride length = 8, meaning that we convert an input sequence 
into a set of consecutive non-overlapping 8-mers.  Appendix A contains a discussion of how these 
parameters were chosen. 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Sample K-merization.  During bioinformatics analysis, DNA sequences are frequently broken into shorter lengths, or k-
mers.  In this illustration, the sequence is divided into sequences of length 8 (k=8), and a window or stride of length 4 is used to 
select the next 8-mer.  In our analysis, we used 8 –mers and a stride length of 8, meaning that the k-mers are end-to-end and do 
not overlap.  
 
Vector Embedding: The first subunit of our pipeline is a shallow neural network that takes a single 
8-mer as input and returns 40 numbers. These 40 numbers can be thought of as a vector which 
is associated with the given 8-mer. This process of vectorizing arbitrary inputs is known as 
embedding, and is a critical component of many machine-learning models (Ng 2017). 
Importantly, our embedding is contextual – it is trained in such a way that two input 8-mers which 
tend to appear near each other in sequences in the training dataset will map to vectors which 
are nearby (in a Euclidean sense) in our 40-dimensional embedding space. Dimensions in this 
space are akin to the components derived from a principal or independent component analysis 
(PCA or ICA).   
 
Embedding is important because it exposes underlying structure in the data that may not be 
apparent at lower levels of abstraction. Two 8-mers, viewed either as strings of 8 bases, or as 
indices into a list of all 65,536 possible unique 8-mers have no meaningful relationship to each 
other. The literal bases may be similar, or the indices numerically close, even if the 8-mers almost 



 

© 2018 In-Q-Tel, Inc.  14 

never appear in similar contexts in real-world sequences. Conversely, two 8-mers that appear to 
be very different in their component bases may frequently appear in proximity to the same 
neighboring 8-mers in the collection of input sequences.  Our contextual embedding would 
represent the former pair of 8-mers as very different vectors, and the latter as very similar 
vectors. This makes it easier for a statistical learning model to detect and capitalize on patterns 
in the data. Potentially a single model could learn both the associations between 8-mers and the 
relevant patterns of cloning boundaries for a given category of backbone, but we chose to 
dissociate these two tasks in order to improve performance on each. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Sample Contextual Vector Embedding: Ten consecutive 8-mers from an E. coli genome (teal) and a quaternary 
ammonium compound resistance gene (qacA) from Staphylococcus aureus (blue) embedded in two dimensions. Individual 
embeddings from each sequence have been connected. Nearby lighter vectors are the same k-mers with random single base 
modifications, shown to highlight the contextual nature of the embedding. 
 
Once the vector-embedding network has been trained, it takes a sequence of 8-mers as input 
and returns a corresponding sequence of 40-dimensional vectors. 
 
Convolutional Sequence Learner: The second subunit of our pipeline is a convolutional neural 
network that learns to predict an element in a sequence given ten elements before and ten 
elements after the position to be predicted. This approach is based off work from the field of 
machine translation and can be thought of as similar to filling in a blank in the middle of a 
sentence. In our case, the words that make up the sentence are 40-dimensional vectors produced 
by our contextual embedding network, and the model produces an estimated 40-dimensional 
vector that fits best in the middle of the sequence, according to the data on which the model was 
trained.  
 
Our current implementation of the convolutional subunit uses what is called ‘valid’ padding: no 
attempt is made to pad the boundaries in order to fully capture every element within the sliding 
convolution. Specifically, because the network requires ten sequence elements preceding and 
following its predicted location, the first element that the model can predict is the eleventh in 



 

© 2018 In-Q-Tel, Inc.  15 

the sequence, and the last is the 11th from the end (the 483rd position, in our case: 493 total 8-
mers). For more details on the model implementation, see Appendix B. The output of the 
convolutional sequence learner is a predicted vector at each location within the sequence.  
 
Classification of Cloning Boundaries: The final step in our pipeline is to compare the sequence 
of predicted vectors with the actual embedding vectors present in the input sequence in order 
to estimate the likelihood that a cloning boundary is present. Note that this final classification 
step does not require any training. We use a simple distance metric – the L2 distance (more 
commonly known as the Euclidian norm in two dimensions: the square root of the sum of the 
squared differences between vector components) – to calculate the similarity between the actual 
vectors and the predicted vectors. A large distance between the predicted and actual vectors 
indicates that the k-mer in the input sequence is different from what the sequence learner 
expected to see at that location, given the k-mers that come before and after. In principal, there 
are many ways that such a discrepancy could be used to assess the likelihood of a cloning 
boundary. We used a simple rolling average threshold: if the average distance between the most 
recent five predicted and actual vectors ever exceeded a threshold (0.25 for example), we 
labelled the sequence as containing a cloning boundary. The threshold was chosen using a 
receiver operator characteristic curve (see the results section below) for each distinct pipeline. 
For a more detailed discussion of classification thresholds, see Appendix B.  
 
 

 
Figure 5.  Cloning Boundary Classifier.  Upper panel: A hypothetical representation of the comparison between predicted vectors 
(in black) and actual embedding vectors (in color). Note that before the cloning boundary, the predicted and actual vectors are 
similar (teal), whereas after the cloning boundary the predictions are not as good (blue).  Lower panel:  A rolling average of the 
distance between input and predicted vectors. Before the cloning boundary, the predictions are good, and the distance metric 
remains low. After the cloning boundary, the convolutional sequence learner is unable to accurately predict the vectors that are 
present in the input sequence and the distance metric increases. This increase is indicative of a deviation from the sequences 
expected by the pipeline, i.e. a likely modification. 
 
  



 

© 2018 In-Q-Tel, Inc.  16 

In summary, our pipeline consisted of the followings steps: 
 

1. Take a 500 base sequence as input, which may or may not contain a cloning boundary. 
2. K-merize the sequence with k = 8 and stride = 8. 
3. Embed the sequence of k-mers as 40-dimensional vectors using an embedding network 

trained on backbone sequences. 
4. Use a convolutional sequence learner, trained on backbone sequences, to assign a 

predicted vector to positions 11 – 483 of the input sequence (offset due to the valid 
padding).  

5. Calculate the L2 distance between each predicted vector and the actual embedding 
vector present in the input.  

6. Compute a rolling average of the L2 distances computed in step 5, with a rolling window 
of 5 positions. If this rolling average is ever greater than 0.25, label the input sequence as 
likely to contain a cloning boundary. Otherwise, label the sequence as unlikely to contain 
a cloning boundary. 

  



 

© 2018 In-Q-Tel, Inc.  17 

Methods: Training and Testing 
 
The two major subunits of our classification pipeline – the contextual vector embedding and the 
convolutional sequence learner – both require training. As discussed above, we elected to train 
these components of our model only on backbone sequences with the goal of creating a tool 
capable of identifying differences from those backbones containing DNA inserted from another 
source organism.  
 
We randomly selected 60% of the backbone sequences from each backbone category (plasmids, 
bacteria, and plants) and trained three separate pipelines on these sequences. The decision to 
create three separate pipelines was based on the expected capacity of the constituent models to 
represent genetic sequences from different organisms: would a model that learned how to 
predict plant sequences also be able to make reasonable predictions about plasmid sequences? 
This question is addressed in the Discussion section below. 
 
We used an additional 20% of the backbone sequences as a validation set during training. First 
as a traditional validation set, we simply observed the model performance on these held-out 
sequences and stopped the training process once the model no longer improved on the validation 
set. This is important because, in general, a machine-learning model will continue to improve 
until its performance on training data approaches 100 percent; however, its performance on 
evaluation data will cease to improve or decrease, a phenomenon known as overfitting.  
 
The validation backbone sequences were also combined with insert sequences (50% of the total 
sequences from category of insert were selected randomly) to generate VSS as described above. 
These VSS were then used to validate the pipeline as a whole. Specifically, as the convolutional 
sequence learner was being trained, after each epoch (an epoch is one pass over the entire 
training data set), a set of VSS was pushed through the current model and the rolling average L2 
distance between input and predicted vectors was computed for each sequence. A range of 
threshold values were used to compute classifier accuracies for the current pipeline, and training 
was continued as long as those classifier accuracies continued to improve. The validation VSS 
were also used to generate the receiver operator characteristic curves that were used to select 
the optimal classifier threshold value for each pipeline.  
 
We chose to optimize the classifier for overall accuracy, providing the user with high sensitivity 
and specificity. In practice, a screening tool for detecting genetically engineered sequences will 
need to prioritize sensitivity over specificity: i.e. the cost of false negatives (missing engineered 
sequences) is greater than the cost of false positives (flagging non-engineered sequences for 
further investigation). To prioritize sensitivity while not ignoring the false-positive rate, we 
evaluate our performance using the F2 score.  Our approach is aligned with IARPA’s FELIX 
program, which has a sensitivity goal of at least 90 percent because of the operational risk of 
false-negative results.     
 
 
 



 

© 2018 In-Q-Tel, Inc.  18 

 
The remaining 20% of the backbone sequences and 50% of the inserts were used to construct 
VSS to be used as test sequences to evaluate the performance of the final model. In addition to 
these test VSS, we had several sources of experimentally modified sequences: a synthetic biology 
company synthetic DNA constructs, Addgene plasmids, and modified bacterial and plant 
sequences collected from the literature (as previously described in Table 3).  
 
When developing a machine-learning model, the goal is to create a tool that will generalize well 
to new examples. To this end, we elected not only to exclude the experimental synthetic 
sequences from the training set – the examples to which the model parameters are adjusted – 
but also from the validation set. This is important because even when a model is not trained on 
a particular data subset, if the experimenter makes adjustments to model architecture or 
hyperparameters in pursuit of improved validation performance (the entire point of a validation 
set), it is still possible to over fit held-out data. A true holdout set, a test set that is exposed to 
your model only once, is the best way to avoid this problem and develop robust and generalizable 
models.  
 
Additional sequence randomization.  An additional layer of data augmentation was used while 
training the vector embedding network. Each base within a 500-bp sequence was given a 1 in 100 
chance of being changed to one of the other three bases, with an equal likelihood of being flipped 
to each of the three.  This was intended to prevent the model from simply memorizing the input 
sequences and learning embeddings only for the specific 8-mers within the training set. When 
presented with a k-mer that was underrepresented during training (or not present at all), the 
model will rely on its random initialization to perform the embedding.  Injecting noise into the 
training data increases the variation in k-mer contexts to which the training model is exposed, 
and helps it develop a more generalizable embedding. 
 
Within the field of machine learning, a model that has learned to simply mirror its training is said 
to have high variance, and high variance models do not generalize well. Challenging a model by 
adding random noise (very much like what might arise due to DNA sequencer errors) forces it to 
develop more robust representations of cloning boundaries, thus improving its generalizability.  

 
 

    
 
  



 

© 2018 In-Q-Tel, Inc.  19 

Results 
 
Following the training procedure described above, we produced three models, each trained on a 
set of backbones from one of three data sources: UniVec + GenBank Plasmids, RefSeq Bacteria, 
or RefSeq Plants (Table 1).  Once trained, each model was tested using sequences extracted from 
the datasets in Table 3.  In each test, subsequences were extracted from samples in Table 3 that 
contained either a known cloning boundary or not (subsequences entirely within either backbone 
or insert regions).  We also tested the models using VSS, constructed by the method described 
above, using data withheld from the training and validation process (Figure 1).  For our metrics 
(Table 4), we chose to report accuracy in order to give a sense of a pipeline’s overall strength, 
and the F2 score as an indication of performance against false negatives, as we deemed it more 
consequential to allow an engineered sequence to go undetected by our proposed triage tool as 
discussed above.   
 
 
Table 4.  Performance of ML models trained to detect cloning boundaries in three sets of backbone 
sequences.  

Training Dataset Testing Dataset Accuracy F2 
UniVec +GenBank Plasmids UniVec + GenBank Plasmids VSSa 0.92 0.922 
 Addgene 0.93 0.926 
 A Synthetic Biology Company 0.87 0.889 
    
RefSeq Bacteria RefSeq Bacteria VSS 0.87 0.856 
 Modified Bacteria 0.79 0.792 
    
RefSeq Plants RefSeq Plants VSS 0.83 0.846 
 Modified Plants 0.74 0.740 

          aVSS, virtual synthetic sequences. 
 
 
Pipeline trained on plasmid backbones:  Plasmids have sequences that range from thousands to 
a few hundred thousand bases, in contrast to microbial genomes, which typically consist of over 
a million bases.  Plasmids used in genetic engineering are typically 1,000 to 20,000 bases in 
length.  There is a group of plasmids that have been used widely in molecular biology for a few 
decades.  There is significant sequence overlap among commonly used commercial plasmids, so 
it seemed likely that a model trained on known plasmid data would recognize boundaries 
between plasmid sequences and insert sequences regardless of origin.  
 
To train a detector for cloning boundaries within plasmid DNA backbones, the vector embedding 
and convolutional sequence learning models were trained on UniVec and GenBank plasmid 
backbones. The model was validated during training with VSS constructed from plasmid 
backbones, and inserts from all categories (Table 2). These VSS were also used to determine the 
optimal classifier threshold for the rolling average distance metric, which was 0.25.  The model 
was tested on VSS constructed from reserved plasmid backbones with inserts from all categories, 



 

© 2018 In-Q-Tel, Inc.  20 

and on sequences obtained from a synthetic biology company and Addgene. This model achieved 
92% accuracy on VSS generated from held-out plasmid backbones and inserts from all categories, 
93% accuracy on sequences from the Addgene dataset, and 87% accuracy on the synthetic 
biology company sequences. The corresponding F2 scores were 0.922, 0.926, and 0.889 
respectively.   
 
The model’s lower performance on the synthetic biology company sequences relative to 
performance on other plasmid data may be due to any of several factors.  False negative results 
may have occurred because a synthetic biology company designs their DNA for synthesis in a 
sophisticated in-house foundry, both insert and backbone sequences alike.  Therefore, the 
backbone portions of the synthetic biology company sequences contain modifications that are 
shared with insert sequences (that facilitate their chemical synthesis in the foundry).  Any 
modifications to insert and backbone sequences that make them more similar may obscure the 
differences between backbone and insert sequences that are observed by the model.   
 
The fact that the F2 score on the synthetic biology company sequences was slightly higher than 
the accuracy suggests that a small majority of misclassifications were false positives (examining 
the confusion matrix confirms that this was the case).  The model somewhat more frequently 
labeled sequences without explicitly defined cloning boundaries as likely to be engineered.  A 
synthetic biology company uses a more limited set of plasmids than those used in the training 
data, and which contain engineered features that may have been misidentified by the model as 
containing cloning boundaries when none (as defined by us) were present.  A reexamination of 
the synthetic biology company dataset may reveal the need to reclassify certain portions of the 
evaluation data to ensure that sequences were correctly categorized and the ML evaluation 
correctly scored.   
 
Pipeline trained on bacterial backbones:  The bacterial cloning boundary detector was trained 
on bacterial backbone sequences taken from RefSeq, validated on VSS generated by combining 
held-out RefSeq bacterial sequences and inserts from all categories (Table 2), and tested on 
additional held-out VSS, and on a small collection of modified bacterial sequences collected from 
the literature. The validation VSS were also used to determine the optimal classifier threshold for 
the distance metric: 0.29.  
 
This model achieved 87% accuracy on the testing VSS and 79% accuracy on the literature-
reported modified bacterial sequences. The corresponding F2 scores were 0.856 and 0.792 
respectively.   The lower performance of the bacterial pipeline relative to the plasmid pipeline 
was anticipated.  The sequence space from which bacterial genomic sequence training data were 
drawn was much greater than the sequence set available for plasmid DNA (Table 1).  Simply put, 
there is more bacterial genomic sequence data available than plasmid sequence data, and the 
variability in the bacterial genomic sequence data is greater, reflecting the vast diversity of 
bacterial life on earth.  A model trained on a more highly varied dataset will likely have a more 
difficult time discerning “backbone” from “insert” DNA sequences, as the backbone training set 
may in fact have contained sequences that resemble (to the model) some features of insert 



 

© 2018 In-Q-Tel, Inc.  21 

sequences.  In light of this observation, it is somewhat remarkable that this model performed as 
well as it did.   
 
Indeed, most of the antibiotic and metal resistance genes (as well as many of the herbicide 
resistance genes) are bacterial in origin. Although our pipeline attempts to learn explicit 
sequential information, it seems likely that sequences with similar evolutionary origins would 
simply tend to be closer together in the embedding space, even if they were not sequential 
neighbors. In traditional bioinformatics, genome sequence similarity is commonly used as a 
method of species differentiation, and close evolutionary relationships could potentially account 
for decreased distance metrics in our classifier. However, our F2 score results do not suggest a 
strong preference for false negatives, and this question bears further empirical examination.  
 
The bacterial pipeline showed a larger drop in performance between the VSS and the literature-
reported modified bacterial sequences than the drop between the plasmid pipeline and the 
bacterial pipeline. This seems intuitive, given that the VSS, while assembled from held-out 
backbones and inserts, are still very similar in construction to the sequences on which the 
pipeline was trained. The modified bacterial sequences (Table 3) are derived from actual 
experimentation, and represent an intentional, non-uniform sampling (by bacterial geneticists) 
of the bacterial backbone sequence space.  This fact, coupled with the size of the dataset, make 
it difficult to draw strong conclusions about model strength and generalizability from this result.   
 
Pipeline trained on plant backbones: The plant cloning boundary detector was trained on plant 
backbone sequences taken from RefSeq, and validated on VSS generated by combining held-out 
RefSeq plant sequences and inserts from only the herbicide resistance insert category (Table 2).  
This model was tested on additional held-out VSS, and on a small collection of modified plant 
sequences collected from the literature. The validation VSS were also used to determine the 
optimal classifier threshold for the distance metric: 0.44. 
 
This pipeline achieved 85% accuracy on the testing VSS and 74% accuracy on the literature 
reported modified plant sequences. The corresponding F2 scores were 0.866 and 0.740 
respectively.  
 
Note that optimal classifier performance for the plant pipeline was obtained at a higher classifier 
threshold than for the plasmid and bacterial pipelines (0.44 vs 0.25 and 0.29, respectively). This 
indicates that the distance between the predicted vectors and the actual embedding vectors 
tends to be higher, which suggests that the predictions made by the convolutional sequence 
learner are less accurate.  
 
Plant genomes are generally an order of magnitude larger than bacterial genomes (billions of 
bases vs microbial genomes with millions of bases), reflecting their much greater complexity. 
Perhaps more importantly, plant DNA is considerably more variable than microbial DNA with 
regard to k-mer context space – both within a given genome and between two different plant 
genomes. This may just be primarily a function of length, as a k-mer will tend to appear near a 
wider variety of neighbors as a sequence grows.  Again, as above, an increase in the complexity 



 

© 2018 In-Q-Tel, Inc.  22 

of the data in the training set seemed to correlate with a drop in the performance of the trained 
model, although again, not as great a drop as we might have imagined.   
 
Overall Performance: The correlation of decreasing performance with increasing training set 
complexity may be a consequence of the choice of vector embedding as part of the model-
training pipeline.  One potential problem known to arise with vector embedding methods is that 
the vector space can become ‘overcrowded’. In essence, the embedding model is being asked to 
carve out a region of 40-dimensional space for each small neighborhood of k-mers.  If k-mers 
always appeared near the same neighbors, i.e. the distribution of k-mer contexts was very small, 
then the corresponding embedding vectors could be very tightly packed: k-mers will be very close 
to their neighbors and very far from non-neighbors. However, if there is significant variability in 
k-mer context -  i.e., k-mers tend to appear near a large number of different neighbors (as is the 
case in a large and varied dataset like the plant backbone sequences) - the corresponding 
embeddings will be more diffuse. The embedding vectors will be spread out more in the space 
since they need to be ‘nearby’ a larger number of neighbors, which themselves have a large 
collection of associated neighboring k-mers. In this latter case, the embedding space can be 
overwhelmed and forced to embed k-mers near vectors that are not contextually similar. This 
would wreak havoc on an attempt to make sequential predictions in such an embedding space, 
but there is no evidence that it occurred in this case. In fact, the relatively small decrease in 
performance seems to suggest that it did not. However, this problem is important to keep in 
mind as our model is scaled up and applied to larger datasets. 
 
The best performance of each model is represented as a Receiver Operating Characteristic (ROC) 
curve in Figure 6.  Each curve reflects the relative level of performance as shown in Table 4.   
 
 
 
 
 
 



 

© 2018 In-Q-Tel, Inc.  23 

 
Figure 6.  Receiver Operator Characteristic (ROC) curves for each ML model trained to detect cloning boundaries using backbone 
data, validated using VSS data and evaluated with VSS data constructed from sequences withheld from validation data.  All models 
were trained on k-merized sequence data with k=8 and stride length of 8.  Training, validation, and evaluation data were 500 bp 
sequences as described in the text.  (A) ML model trained on UniVec and NCBI Plasmids sequences and evaluated on withheld 
sequences drawn from UniVec, NCBI Plasmids and insert DNA samples; AUC=0.93.  (B) Model trained on RefSeq Bacteria sequences 
and evaluated on withheld sequences drawn from RefSeq Bacteria and insert DNA samples;  AUC=0.87.  (C) Model trained on 
RefSeq Plant sequences and evaluated on withheld sequences drawn from RefSeq Plant and Herbicides Resistance DNA samples; 
AUC=0.83.  See Tables 1-3 for more details.   
 
 
When we examine the performance of our pipelines on the experimentally modified sequences 
(Table 4 and Figure 7), we see decreased overall accuracy with an approximate maintenance of 
symmetry (i.e. the models maintain similar balances between sensitivity and specificity.) The 
plant pipeline illustrates this clearly: the AUC drops from 0.83 (Figure 6, panel C) to 0.76 (Figure 
7, panel D) between the plant-derived VSS test set and the modified plant sequences sourced 
from the published literature.   
 
The shape of the plant-derived ROC curve (Figure 7, panel D) was unexpected.  The sudden jump 
in the false positive rate near the bottom left of the curve is likely due to the presence of true 
negative examples with closely clustered scores, interspersed with no or few true positive 
examples.  These examples may represent backbones in the evaluation data that differed 
sufficiently from those in the training data to earn a high distance metric from the convolutional 
sequence learner.  



 

© 2018 In-Q-Tel, Inc.  24 

 
 
 

 
 
 
Figure 7.  Receiver Operator Characteristic (ROC) curves for each ML model trained to detect cloning boundaries using backbone 
data, validated using VSS data and evaluated with sequences from engineered organisms.  All models were trained on k-merized 
sequence data with k=8 and stride length of 8.  Training, validation, and evaluation data were 500 bp sequences as described in 
the text.  (A) ML model trained on UniVec and NCBI Plasmids sequences and evaluated on sequences drawn from Addgene 
plasmids; AUC=0.92.  (B) ML model trained on UniVec and NCBI Plasmids sequences and evaluated on sequences drawn from a 
synthetic biology company data; AUC=0.89.  (C) Model trained on RefSeq Bacteria sequences and evaluated on sequences drawn 
from modified bacterial DNA pubished in the litereature; AUC=0.79.  (D) Model trained on RefSeq Plant sequences and evaluated 
on sequences drawn modified plant DNA published in the literature; AUC=0.76. (See Tables 1-3 for more details).   
 
 
 
 



 

© 2018 In-Q-Tel, Inc.  25 

Discussion 
 
Our objective in this project was to investigate the utility of machine learning based tools for 
identifying engineered DNA. We have built and tested one such tool and found that it is capable 
of achieving 74-93% accuracy as a cloning boundary classifier, depending on the choice of training 
and evaluation datasets.  Unsurprisingly, performance of the trained models seemed to correlate 
inversely with the size and complexity of the dataset available for training.  Our goal for this 
project was to obtain an accuracy of 90% as a threshold for concluding that ML approaches show 
promise as a rapid triage tool for detecting the insertion of non-native DNA sequences into 
plasmids or the genome of an organism, and we approached this level of performance in this 
work.  The goal for an operational triage tool would be accuracy over 99% (to reduce the burden 
of manual verification), with a very low false-negative rate (false positive results being more 
tolerable than missing a genetically engineered modification of significant importance).  Our 
results suggest that, with further development, ML models are likely to be incorporated in such 
analyses in the future.  We use “models” in the plural because, as our results show, training 
models on different classes of DNA sequence data lead to varying results, so models will likely 
need to be trained to detect cloning boundaries in a similar variety of inputs.   
 
Reaction to this work by B.Next’s expert community.  On February 6, 2018, B.Next held a 
roundtable discussion event that was attended by many of the same individuals present at the 
original September 2016 meeting that launched the B.Next GEMstone project and IARPA’s FELIX 
program. The work presented in this report was discussed in detail during the roundtable and 
the reception was strongly positive. The participants expressed explicit interest in our 
methodology and in further developing machine learning synthetic DNA detection tools. During 
this discussion, several important questions were raised surrounding operationalization of such 
a tool: 
 
How well does the model work on a collection of sequence reads? Modern DNA sequencing is 
performed on millions of short fragments from a longer strand of DNA. We built our model to 
work within this paradigm by assuming that input sequences would be within the length range 
produced by current sequencer reads. However, our model has no ability to treat a set of 
sequences as a collection from a given longer sequence. The model can be applied to sequential 
subsequences taken from a longer sequence (such as an entire bacterial genome), but this is 
possible only after the individual reads have been assembled into the longer source sequence. 
Sequence assembly is a time consuming and complex process, and is an interesting machine 
learning challenge in its own right. If our model is intended to work as a rapid triage tool, it should 
be tailored to take a set of un-assembled reads as input and return an estimation that the 
collection as a whole has been engineered in some way. It is likely that a move in this direction 
would ultimately improve model performance, as there is more information about sequence 
origin in a collection of related sequences than within any one individual sequence.  However, a 
test of this hypothesis question was deemed outside the scope of our initial approach. 
 



 

© 2018 In-Q-Tel, Inc.  26 

What level of expertise is required by the user? One of the key motivations in exploring a 
machine learning approach was to make detecting evidence for genetic engineering scalable. 
Even after prolonged model development, it is likely that for any particular input sequence, an 
expert human biologist will be able to provide a more accurate assessment of the sequence 
source. Such an analysis requires time and resources that restrict its usefulness as a triage tool in 
the field. Ideally, a genetic engineering detector would be useable by clinicians or operatives with 
no specific domain knowledge.  Of course, such users will likely require an interface other than 
the command line, so a productized version of a triage tool will need a graphical user interface.   
 
Our current model does not require any domain knowledge of machine learning or biology to 
apply, but it does require some level of knowledge to train. A potential user has to decide what 
sorts of sequences a given model will be used to screen and train a pipeline accordingly – a non-
trivial task. The goal would be to have a set of pre-trained models for the most common classes 
of sequences, available as packages and applicable without additional training.     
 
How many pipelines or models will ultimately be required? As discussed above, we trained 
three separate pipelines – one each on a set of plasmid, bacterial, and plant backbone sequences. 
Was this necessary? Could we have trained a single model on backbone sequences from all three 
sources without sacrificing performance? A series of simplified experiments was performed early 
in the development process to investigate this question, and the answer was unequivocal: the 
wider variety of backbone sequences that a model of a given size is driven to learn, the worse it 
will perform at identifying deviations from those sequences. It is possible to increase the model 
size in several ways which has the potential to increase its representational capacity (allowing it 
to learn more), but this increases the likelihood that the model will overfit its training data and 
dramatically increases computational demands.  
 
This is a common problem in machine learning applications.  During research projects, it is useful 
to build and test single models with as large of a representational capacity as possible.  However, 
for practical purposes it is better to build a set of smaller models, each focused on one narrow 
aspect of the problem. Ultimately, this would be our strong recommendation: establish a set of 
interlocking tools, say one for screening viral sequences and one for screening bacterial 
sequences, rather than overburdening a single model for the sake of elegance. 
 
Training/Test Bleed: It is likely, particularly for the plasmid pipeline, that sequences in the 
training set were highly similar to sequences in the testing set. Care was taken to carefully 
separate sequences between training, validation, and testing sets as described above, and a 
simple filter was applied to remove any identical subsequences from the dataset. However, it 
would likely be appropriate to apply a more sophisticated screen of sequence similarity in order 
to prevent very similar sequences from being present in both the training and testing sets. If 
present, such sequences could artificially inflate our final performance metrics. Ultimately, the 
goal of the machine learning practitioner is to select a training set that is representative of the 
actual real-world data to which the model will be applied.  
 



 

© 2018 In-Q-Tel, Inc.  27 

What about ‘natural’ boundaries? We chose to focus on a narrow indicator of what makes a 
sequence engineered: according to our model, a sequence is engineered if it contains a 
juxtaposition of two sequences that do not normally appear in nature (i.e. a cloning boundary). 
However, there are many natural situations in which just such a juxtaposition could occur. Two 
of the most common are horizontal gene transfer between bacterial species and transposon 
relocation, which occurs in virtually every known organism (transposable elements make up an 
estimated 2% of the human genome). As it currently exists, our pipelines, even perfectly trained, 
would incorrectly label either of these phenomena as clear examples of genetic engineering. This 
could be addressed by augmenting the training set with examples of ‘natural’ boundaries, but it 
seems likely that this would require far too many examples for the model to develop a meaningful 
representation of such a highly stochastic process. An alternative approach, which seems more 
promising, is to develop a primary screening layer that could be applied before or after the 
machine learning pipeline and would directly check for known natural boundaries – there are 
well established tools for identifying horizontal gene transfer in certain bacterial species.  
 
What is the smallest modification our model can detect? To what degree is the model sensitive 
to the size of the insert? Current DNA engineering techniques are capable of modifying single 
bases within a sequence. Is our model capable of detecting such small changes? In its current 
instantiation, probably not. Within a given training set of limited size, a k-mer is likely to appear 
in nearly identical contexts as the same k-mer with a single base modified. In fact, certain k-mers 
simply will not appear in the training set at all (barring our additional layer of data augmentation 
in which we randomly flip bases) – and the embedding vector will tend to place them near the k-
mers that they most resemble. Thus, a single base pair modification will register as at most a 
small deviation in the embedding space and the classifier will generally fail to register this 
deviation as an indicator of engineering. In fact, errors in the sequence learner’s predictions are 
likely to overwhelm the relatively small differences between the embedding vectors of two highly 
similar k-mers.  
 
This problem extends beyond single base pair modifications to any insertion that fits entirely 
within one convolution of the convolutional sequence learner. A well-trained sequence learner 
might still produce accurate predictions if only a portion of its input resembles the training data. 
In this case, an insertion that was small enough not to disrupt the predictions of the sequence 
learner would very likely go undetected. This generalization of the problem also suggests a 
solution: modify the pipeline to operate at multiple scales in parallel. For example, a separate 
sequence learner could be trained and applied directly to smaller sequence subunits, say 
individuals bases or 2-mers. This introduces a new set of problems during training, but ultimately 
it seems clear that a different tool will be required to detect very small modifications. 
 
Will an optimized machine learning tool replace human experts? No. We envision our pipeline 
as one more tool in the investigative toolbox of bioinformaticists. As in many other areas, the 
goal is not supplant human expertise, but to supplement it. 
 
What is the relationship between this study and efforts at other organizations?  This effort 
complements but does not duplicate new initiatives at IARPA and DARPA:   



 

© 2018 In-Q-Tel, Inc.  28 

 
• Finding Engineering-Linked Indicators (FELIX), is a new program (currently in the contract 

negotiation phase) seeking new experimental and computational tools to detect evidence 
for engineering in biological systems.  The program was started by a senior IC scientist 
who attended the B.Next roundtable in 2016, and soon after obtained a leave of absence 
to create the program at IARPA.  A significant amount of FELIX’s effort will be devoted to 
signatures other than those found in DNA sequences, and the requirements for tools 
being developed are not focused on rapid assessment.  The work featured in this study 
was focused on methods that can generate results quickly upon obtaining a genomic 
sequence from a pathogen, and as such could be considered a “triage” tool or method to 
be used while the user employs more complex tools developed under FELIX.  B.Next staff 
served as subject matter experts on the source selection board for proposals submitted 
to the FELIX program.   

 
• Functional Genomic and Computational Assessment of Threats (Fun-GCAT), an IARPA 

program that is developing new ways to predict “dangerous” functions encoded by DNA 
or RNA when the query sequences are short (50-200 bases).  The eventual users include 
commercial DNA foundries that receive orders for synthetic DNA from academic and 
commercial customers.  The sequences in question could be either engineered or natural; 
distinguishing between these is not a Fun-GCAT objective. 

 
• Safe Genes, a DARPA program, proposes to understand the functional limits of genome 

editing technology.  The program also is attempting to develop countermeasures to the 
misuse of genome editing technology, with the potential goal of “resetting” an edited 
genome to its natural state.  The program assumes that performers already understand 
the engineered nature of a subject sequence.   

 
Future Directions  
We propose to continue exploring the utility of machine learning tools for the detection and 
classification of engineered DNA. We have identified two promising areas of interest on which 
we may focus during the coming fiscal year, pending decisions on FY19 programming: 
 
Functional Classification: Given a purported modification, can we determine the intended 
functional change? Was the engineer trying to confer resistance to a common antibiotic or enable 
a microorganism to evade the immune system in some way? Predicting biological function from 
DNA sequences is a long-standing problem in biology – recent work suggests that machine 
learning may be a powerful tool for addressing it. This goes beyond the simple binary case, as the 
multiple classes of modification can quickly balloon. 
 
Technical Identification and Source Attribution: Can we identify what sort of technical processes 
were employed to produce a given strand of engineered DNA? Can we infer what sequencing 
methodology was most likely used to generate the actual sequence data that our model takes as 
input? In conjunction with these questions, can we identify the most likely organizational sources 



 

© 2018 In-Q-Tel, Inc.  29 

of a given piece of engineered DNA – a particular academic group or company, a national 
laboratory, or an unaffiliated individual biologist? Admittedly, this seems like an extremely 
difficult problem, requiring a quantity and quality of training data that will simply not be available 
– and yet even a modest contribution towards this end would be a significant step towards the 
implicit goal of the national security community: combatting the misuse of biotechnology.  
 
  



 

© 2018 In-Q-Tel, Inc.  30 

References 
 
In-Q-Tel, Inc.  2017.  Capabilities and problems associated with detecting engineered 
microorganisms and deducing function.  Available at 
https://www.bnext.org/article/roundtable-interrogation-of-suspect-biological-samples/.  
Accessed 2/21/2018. 
 
Allen J. and T. Slezak.  2010.  Genetic engineering workshop report.  US Department of Energy 
technical report LLNL-TR-463112.   
 
Altschul S.F., Gish W., Miller W., Myers E.W., and D.J. Lipman.  1990.  Basic local alignment 
search tool.  J. Mol. Bio. 215:403-410.   
 
Libbrecht M.W., and W.S. Noble.  2015.  Machine learning applications in genetics and 
genomics. Nat. Rev. Genet. 16: 321-332. 
 
Kunjapur A.M., Pfingstag, P. and N.C. Thompson.  2017.  Gene synthesis allows biologists to 
source genes from farther away in the tree of life.  bioRxiv preprint 190868.   Available at 
https://www.biorxiv.org/content/early/2017/09/19/190868.  Accessed 2/21/2018.   
 
Johnson I. S. 1983.  Human insulin from recombinant DNA technology.  Science 219: 632-637. 
 
Funke T., et al.  2006.  Molecular basis for the herbicide resistance of Roundup Ready crops. 
Proc. Nat.  Acad. Sci. USA 103:13010-13015. 
 
Adler A. and F. Yaman.  2016.  AI for Synthetic Biology, IJCAI Proceedings.  Presentation slides 
available at http://synthetic-biology.bbn.com/ijcai_workshop/content/ai_for_synbio_web.pdf.       
Accessed 2/21/2018. 
 
Pal C., Bengtsson-Palme J., Rensing C., Kristiansson E., and D.G.J. Larsson.  2014.  BacMet: 
antibacterial biocide and metal resistance genes database, Nucl. Acids Res. 42:D737-D743.  
 
Heap I.  The International Survey of Herbicide Resistant Weeds.  Available at   
http://www.weedscience.org/Sequence/sequence.aspx.  Accessed 2/21/2018.   
 
Lamesch P., et al.  2007.  hORFeome v3.1: a resource of human open reading frames 
representing over 10,000 human genes.  Genomics 89: 307-315. 
 
Martin J., Rosa B.A., Ozersky P., et al.  2015.  Helminth.net: expansions to Nematode.net and an 
introduction to Trematode.net.  Nucl. Acids Res. 43:D698-706.  
 

https://www.bnext.org/article/roundtable-interrogation-of-suspect-biological-samples/
https://www.biorxiv.org/content/early/2017/09/19/190868
http://synthetic-biology.bbn.com/ijcai_workshop/content/ai_for_synbio_web.pdf
http://www.weedscience.org/Sequence/sequence.aspx


 

© 2018 In-Q-Tel, Inc.  31 

Blake J.A., Eppig J.T., Kadin J.A., Richardson J.E., Smith C.L., Bult C.J., and the Mouse Genome 
Database Group. 2017. Mouse Genome Database (MGD)-2017: community knowledge resource 
for the laboratory mouse. Nucl. Acids Res. 45: D723-D729. 
 
Gramates L.S., et al. and the FlyBase Consortium.  2017. FlyBase at 25: looking to the future. 
Nucl. Acids Res. 45(D1):D663-D671 
 
Herscovitch M., Perkins E., Baltus A., and M. Fan.  2012.  Addgene provides an open forum for 
plasmid sharing.  Nat. Biotechnol. 30:316-317. 
 
Brownlee J.  2017.  Why one-hot encode data in machine learning?  Machine Learning Mastery.  
Available at:  https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-
learning/.  Accessed 2/25/2018.   
 
Ng, P. 2017.  dna2vec: Consistent vector representations of variable-length k-mers." arXiv 
preprint.  arXiv:1701.06279.  Available at https://arxiv.org/pdf/1701.06279v1.pdf.  Accessed 
2/21/2018.   
 
Rehurek R. and P. Sojka.  2010.  Software framework for topic modelling with large corpora.  In 
Proceedings of the LREC 2010 workshop on New Challenges for NLP Frameworks.  Available at: 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.695.4595.  Accessed 2/22/2018.   
 
Conneau, A. et al.  2016.  Very deep convolutional networks for natural language processing. 
arXiv preprint.   arXiv:1606.01781.  Available at https://arxiv.org/pdf/1606.01781.pdf.  Accessed 
2/21/2018.   
 
Gehring, J. et al.  2017.  Convolutional sequence to sequence learning. arXiv preprint. 
arXiv:1705.03122.  Available at https://arxiv.org/pdf/1705.03122.pdf.  Accessed 2/21/2018.    

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://arxiv.org/pdf/1701.06279v1.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.695.4595
https://arxiv.org/pdf/1606.01781.pdf
https://arxiv.org/pdf/1705.03122.pdf


 

© 2018 In-Q-Tel, Inc.  32 

Appendices 
 
Appendix A: Exploratory Data Analysis and Initial Experiments 
 
In developing machine-learning algorithms for this particular task, we used a number of 
exploratory tools in order to build our model’s complexity. We first worked to determine whether 
the necessary structure was present in the training data to utilize statistical approaches. For this, 
we used a clustering algorithm to extract classes or categories from a dataset that were not 
included in the training dataset but were known to contain cloning boundaries. The success of 
the unsupervised approach in clustering the blind dataset suggested that inherent statistical 
structure exists and there was potential for more complex modeling. Next we utilized some 
classical machine learning techniques. These models were used to build features that could 
define baseline inferencing accuracy. From these features, we considered a neural network as a 
classifying algorithm. Included below is a description of our efforts using  unsupervised clustering, 
supervised non-neural-network methods, and featurization as applied to plant genomic 
sequence data.   
 
Unsupervised clustering of a synthetic biology company’s synthetic sequences.  Sequences 
from a synthetic biology company dataset were broken into k-mers, with k = 4, 8, and 16, and 
with strides of 1, 2, 4, and 8. K-merized sequences for each k-stride pair were then used to fit a 
Principal Component Analysis (PCA) matrix with 20 components. The sequences, reduced to 20 
component vectors by PCA, were then clustered using k-means, where k was increased from 5 to 
20. The optimal k was found to be 8. Upon investigation of the specific cluster members, they 
were found to match closely with 7 or 8 different synthetic processes used by a synthetic biology 
company. A similar set of experiments was conducted using t-SNE for dimensionality reduction 
instead of PCA, although these results were used primarily for visualization purposes. The results 
of both approaches suggested that the synthetic biology company dataset is suitable for 
supervised classification models. 
 
These experiments also helped us to understand the significance of stride length during k-
merization. Smaller strides produce more k-mers in a linear fashion (stride = 2 yields twice as 
many k-mers as stride = 4), and this yields a superlinear increase in total computation time during 
model application (training and testing). For PCA and gradient boosted trees, this increase is 
tolerable, but for more complicated network-based models, it quickly becomes unmanageable. 
This concern ultimately led us to adopt a stride length equal to our k-mer size, eliminating 
overlap.    
 
Supervised non-network approaches.  In order to establish an appropriate featurization of DNA 
sequences – a way of representing the sequence to a learning model that compactly retains the 
relevant information – we performed a set of experiments using a gradient boosted tree classifier 
(xgboost. XGB). We tested the XGB model against three different classifications: a synthetic 
biology company vs Addgene, E. coli vs a synthetic biology company and viral families. 
 



 

© 2018 In-Q-Tel, Inc.  33 

• A synthetic biology company vs Addgene: Plasmid subsequences of length 1000 from the 
Addgene dataset and the synthetic biology company sequences were k-merized as above, 
with k = 4 and 8 only, and with strides of 2 and 8 only. An XGB classifier was trained on 
the k-mers without a representation of order – a given sequence was treated as an 
unordered ‘bag of kmers’. Another XGB Classifier, with the same hyperparameters, was 
trained on the same sequences represented as ordered lists of k-mers. Unsurprisingly, the 
classifier trained on ordered k-merizations performed significantly better. Another 
important consideration is the impact of k-mer overlap. Consider that two adjacent k-
mers with stride = 1 will differ at only a single base. In this experiment, the performance 
of the XGB Classifier was barely affected by varying stride length.  This was not surprising, 
given that working directly with k-mers provides the tree-based classifier with no notion 
of context. However, it seemed likely that as we moved towards a more representational 
featurization, k-mer overlap had the potential to act as a confounder for a context based 
model. If two k-mers show up in ‘the same context’ simply because they were produced 
by sliding the k-window over one base, that really isn’t what we want a contextual model 
(like our ultimate vector embedding) to learn. We’d rather the model represent which 
subsequences appear near each other in sequences without overlapping. This confirmed 
our decision to adopt a stride length equal to our k-mer size, eliminating overlap.  We 
chose to set these values equal to 8 for computational reasons:  longer k-mers would have 
delayed model development. However it is possible that increasing k-mer length could 
also provide more contextual information and this is a promising future direction. 

 
• E. coli vs a synthetic biology company: An E. coli genome was obtained from RefSeq. This 

genome and the synthetic biology company dataset were broken into subsequences of 
lengths of 100, 200, 500, 1000, 1500, and 2000 bases. Sequences of each length were 
separately k-merized as above and used to train a gradient boosted classifier. 
Performance was approximately uniform across input sequence length, although slightly 
worse for 100 base inputs. Models trained with 1500 and 2000 base sequences exhibited 
long training times: 6 hours for 1500 and 18 hours for 2000.  

 
• Viral Family Classification: This experiment was conducted to compare featurization 

methods – k-merization schemes as described above and a base pair ‘one-hot encoding’ 
approach (Brownlee 2017).  One-hot encoding is a representation of categorical variables 
as binary vectors.  It first requires that the categorical values be mapped to integer values. 
Then, each integer value is represented as a binary vector that is all zero values except 
the index of the integer, which is marked with a 1.  Each base location is treated as a list 
of 4 numbers, all zeros except for a 1 corresponding to the base that is present at the 
given location (or a fraction for ambiguous bases). Genomic sequences from eight families 
of virus were featurized in one of these two ways and then used to train a corresponding 
gradient boosted tree classifier. Data for testing the classifier was held out from the 
training dataset.  The classifier trained on k-mers obtained 97% accuracy (for inclusion of 
test cases in a viral family or an “other” category) compared to 91% accuracy with the 
one-hot-encoding scheme. This result was interpreted as compelling evidence that k-
mers were a promising preprocessing method for DNA sequence classification. We did 



 

© 2018 In-Q-Tel, Inc.  34 

not test this classifier on any other viral family sets to see if the method would generalize.  
This is an interesting direction for future work, but we did not pursue it in this work 
because it did not further our goal of building a cloning boundary detector.   
 

Exploring featurization: detecting open reading frame insertions in plant genomes.  This was 
the first real attempt at the stated problem – we collected a small set of natural plant genomes 
from RefSeq and herbicide resistance genes and used a VSS pipeline similar to the one in our final 
approach to generate a set of modified plant sequences. We trained two classifiers using this 
dataset, the first of which used a BLAST featurization scheme. We created a BLAST database from 
a large collection of RefSeq plant genomes, overlapping with but not totally containing the 
sequences in our VSS training and test sets. We then searched against this database using 
established BLAST tools and used the output homology results to train a gradient boosted tree 
classifier. This approach achieved 98% accuracy on sequences that were in the BLAST database 
(it was able to perfectly identify them and any alterations were seen as segments of decreased 
homology), but only 51% accuracy on sequences outside of the database (the test set was 
balanced to have equal numbers of examples of both modified and non-modified plant 
sequences, meaning that purely guessing at random would have an accuracy of 50%).  
 
Our second classifier used a sequential k-merization similar to what was used in our final 
approach, but instead of embedding these k-mers and predicting their sequence, we used them 
to directly train a gradient boosted tree classifier. This approach achieved 86% accuracy on held-
out test sequences. This early result was a clear indication that BLAST based approaches would 
require significantly more work to be useful as generalizable screening tools. Unless we knew in 
advance exactly what sorts of sequences we’d be looking at, it seemed more promising to pursue 
an unstructured, sequence based approach to engineering detection. 
 
 
 
  



 

© 2018 In-Q-Tel, Inc.  35 

Appendix B: Model Architecture and Training Details 
 
Vector Embedding Model: This model is based on the model of Ng (2017) called dna2vec, which 
itself is an extension to DNA sequences of the popular natural language processing tool word2vec 
(Rehurek and Sojka 2010). The model consists of a two layer fully connected neural network. 
Each layer consists of 600 units with ReLU nonlinearities. We implemented a skip-gram training 
scheme because in general skip-gram methods are preferred for large data sets with smooth 
distributional information (i.e., any given k-mer is about as likely as any other k-mer to show up). 
Certain K-mers, such as 8 T's in a row, may appear infrequently, but no small set of k-mers 
dominate the distribution (i.e., its reasonably flat - the perfect setting for skip-gram training). 
 
Within each pipeline, the embedding model is trained on 60% of the corresponding backbone 
sequences. The training, validation, and testing partitions were chosen at random on the 
sequence level, without regard for specific sequence lengths. The plasmid embedding model was 
trained for 20 epochs, and the bacterial and plant embedding models were trained for 35 epochs 
each due to the larger sizes of these backbone datasets. 
 
Convolutional Sequence Learner: This model is loosely based off of a fully convolutional 
sequence-to-sequence machine translation tool built by Facebook® AI in 2017 (Conneau et al. 
2016, Gehring et al. 2017). It consists of four convolutional layers followed by two fully connected 
layers, each with alternating non-linearities. Each convolutional layer contains 256 kernels of 
width five and full depth (each kernel samples all 40 dimensions of 5 consecutive vectors) with 
ReLU activations. The fully connected layers each contain 512 units with ReLU activations. The 
model takes twenty 40-dimensional vectors as input, or 800 total input features. The final ouput 
layer is a single 40-unit fully connected layer with a linear activation.  
 
During training, ten vectors before and after a given position within a sequence are used as input 
and the linear output layer is driven to reproduce the vector that is actually at the given position. 
Specifically, the loss function for the model is the L2 distance between the predicted and actual 
vector (the same function which will ultimately produce the classifier distance metric).  
 
This model was trained with an adam optimizer and an initial learning rate of 2e-3. Weights were 
initialized randomly and an early stopping threshold of 1e-5 was used. No dropout was used in 
this model during training.  
 
Classification Threshold: In order to use the output of the convolutional sequence learner as a 
classifier, our pipeline compares these predictions with the actual embedding vector present in 
the input sequence. This comparison consists of computing the L2 distance between these 
vectors – which still leaves the question of how to tell if a given distance is sufficient to suspect a 
cloning boundary. We elected to use a simple threshold value applied to a rolling average of the 
distance metric. A rolling average was used because the distance metric varies considerably 
between k-mer locations and occasionally jumps to high values within a non-engineered 
backbone region. We chose a fixed threshold purely for simplicity, even though it seems likely 



 

© 2018 In-Q-Tel, Inc.  36 

that some kind of rolling area-under-the-curve, or adaptive threshold approach could improve 
model performance.  
 
Ideally there would be one more layer of statistical learning – a final model, possibly a gradient 
boosted tree classifier, that takes the distance metrics from an input sequence and predicts the 
sequence label. Such a capstone model would potentially allow for “end-to-end” training, a 
relatively recent advancement in machine learning in which a set of models arranged serially are 
all trained together so that the output of one model isn’t fit to whatever arbitrary performance 
metric has been established – but instead to be the optimal input for the next model. 
 
The specific threshold values that we chose corresponded to the optimal point on each pipeline’s 
ROC curve: the point at which the sum of sensitivity and specificity was maximized. We then 
evaluated and reported on both accuracy and F2 score as seen in Table 4. 
 
Technical considerations: 
 
All of this work was done in Python®. The xgboost and scikit-learn libraries were used during the 
exploratory data analysis phase, and the keras and TensorFlow frameworks were used to train 
neural networks on Nvidia® GPUs. All of this software is open source.  
 
Training the vector embedding used in this work takes approximately two hours per epoch. The 
convolutional sequence learner takes approximately 30 minutes per epoch and requires around 
60 epochs to converge, roughly 30 hours per pipeline. This training time is not dependent on the 
initial size of the dataset as the embedded vectors are all of fixed size.  
 
 
 
 
 
 
 
 
 


	Executive Summary
	Background
	Methods: Data Sources
	Methods: Model Architecture
	Methods: Training and Testing
	Results
	Discussion
	References
	Appendices
	Appendix A: Exploratory Data Analysis and Initial Experiments
	Appendix B: Model Architecture and Training Details


